COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

Spatial Anti-aliasing for Animation Sequences
with Spatio-temporal Filtering

Mikio Shinya
NTT Human Interface Laboratories
3-9-11 Midori-cho, Musashino-shi
Tokyo 180, Japan
email: shinya@nttarm.ntt.jp
tel: +81 422 59 2648

Abstract

Anti-aliasing is generally an expensive process because it
requires super-sampling or sophisticated rendering. This
paper presents a new type of anti-aliasing filter for anima-
tion sequences, the pirel-tracing filter, that does not require
any additional sample nor additional calculation in the ren-
dering phase. The filter uses animation information to cal-
culate correlation among the images, and sub-pixel infor-
mation is extracted from the sequence based on the corre-
lation. Theoretical studies prove that the filter becomes an
ideal anti-aliasing filter when the filter size is infinite.

The algorithm is simple image processing implemented
as post-filtering. The computational cost is independent of
the complexity of the scene. Experiments demonstrate the
efficiency of the filter. Almost complete anti-aliasing was
achieved at the rate of about 30 seconds per frame for very
complex scenes at a resolution of 256 x 256 pixels. The pixel
tracing filter provides effective anti-aliasing for animation
sequences at a very modest computational cost.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation; 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism

Additional Keywords and Phrases: Anti-aliasing,
Spatio-temporal filtering, Computer Animation

1 Introduction

Aliasing artifacts have been troublesome in the field of
graphics for a long time. These problems are particularly
bad in animation sequences, since flickering thin objects and
traveling jaggies are very noticeable.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1993 ACM-0-89791-601-8/93/008/0289 $01.50

For viewers in general, these spatio-temporal artifacts are
more noticeable than the purely spatial ones in still images.
To detect spatial aliasing, the true images (e.g., continuous
lines or checker board patterns) should be inferred from the
sampled image by intelligent, high-level visual processing.
On the other hand, spatio-temporal aliasing can be detected
by low-level vision processes (e.g., flicker detection and op-
tical flow segmentation) without deep knowledge. This may
seem rather negative, but it also implies a positive aspect:
there may be easier ways to detect and remove aliasing in
animation sequences.

Usually, there is strong correlation among the succes-
sive frames of motion pictures. This correlation allows ef-
ficient image compression in video codecs (coder/decoder)
[NETRA)]. This motivates us to extract sub-pixel infor-
mation from image sequences, which could reduce aliasing
artifacts.

This paper mathematically analyzes spatio-temporal
characteristics of motion image sequences, and clarifies the
useful features of their spectrum. Based on the analysis,
a new type of anti-aliasing algorithm is proposed. In the
algorithm, the image sequences are filtered with a linear
shift-variant spatio-temporal filter called the pizel-tracing
filter. Through the image sequence, the filtering process
traces the pixels corresponding to the same object point,
and the weighted sum of their colors is calculated. Theoret-
ical studies prove that the filter acts as an ideal anti-aliasing
filter when the filter size is infinite.

Unlike most anti-aliasing algorithms, this algorithm is
achieved by post-filtering. The advantages are:

o fast execution independent of the scene complexity
(e.g., number of polygons),

e simplicity of implementation,
o no dependence on the rendering process.

Experiments showed that the algorithm was efficient in
terms of computational cost and provided effective image
improvement.

289

SIGGRAPH 93, Anaheim, California, 1-6 August 1993

2 Related Work

There are too many studies of anti-aliasing to review ex-
haustively, so only spatio-temporal approaches are briefly
mentioned here. There are two major methods of spatio-
temporal anti-aliasing: super-sampling and analytic cal-
culation. In the super-sampling scheme, distributed ray
tracing [COOK84] and alpha-blending [HAEBERLI] with
stochastic sampling [DIPPE,COOK86] are the most suc-
cessful and commonly used. Their advantages are simplic-
ity and generality, but the disadvantage is a computational
cost that is proportional to the rate of super-sampling.
Although adaptive sampling [LEE] and optimal sampling
patterns [MITCHELL) have been investigated, image im-
provement by super-sampling is generally computationally
expensive. The analytic approach, on the other hand, is
attractive because an exact solution can be calculated in
relatively modest computation time. However, algorithms
usually involve rather complicated processes, such as three-
dimensional scan-conversion [GRANT] and analytic filter-
ing of polygons [CATMULL84], and are only applicable to
particular object primitives (typically polygons). In short,
both approaches directly calculate sub-pixel or sub-frame
information and then apply local filters.

Our approach differs from the above methods in three
ways. First, our approach does not require any additional
sample or additional calculation in the rendering phase.
Second, it evaluates sub-pixel information from the image
sequences themselves, taking the advantage of global spatio-
temporal correlation. Third, our method uses a temporally
global filter to removes spatial aliasing while other methods
attempt to produce motion-blur by local temporal filtering.

3 Fourier Analysis

Temporal variation in animation sequences is usually due
to the motion of the camera and objects. In this section,
we mathematically analyze the spatio-temporal spectra of
image sequences of moving objects. The velocity on the im-
age plane is first assumed to be constant in time and space;
analyses with spatial and temporal variation follow. The
analyses provide an ideal anti-aliasing filter with infinite in-
tegral under certain conditions. Throughout this section,
a one-dimensional space (image) is assumed for simplicity,
but extension to two-dimensional images is mathematically
straightforward.

3.1 Preparation
Let = be the image coordinate in pixels and t be the time
in frames. Let a real function fo(z) be the image at t =

to, and f(z;t) be the image sequence. The spatial Fourier
transform of f is defined by

Fo(e) = / fo(®) exp(aéz)ds,

F(¢;t)

/ f(z;t) exp(2éz)dz,

290

~
F1,-1

reconstruction range

Figure 1: Aliasing in the Fourier Domain.

where ¢ denotes the spatial angular frequency (rad/pixel),
and 1 is the imaginary unit, 1> = —1. Similarly, the temporal
Fourier transform is defined by

Fg,w) = / F(¢;t) exp(iwt)dt,

where w is the temporal angular frequency in rad/frame.

The sampled image sequence f(z,1) is represented by

folmst) = f(z:) Y 8(z — 27k /2)8(t - 271/9),

k,l

where = and Q are the sampling frequencies in space and
time. When one point per pixel per frame is sampled, & =
27, and Q = 2x. The Fourier transform of f; is

B(¢w) =) Fam(éw), 1

n,m

where

Frm(€,w) = F(€+nE,w +mQ).

Equation 1 indicates that replicas of F appear, centered
at the grid points (—nZE, —mQ), as illustrated in Figure 1.

When F(¢,w) # 0 outside the Nyquist frequencies
(£Z/2,£90/2), some replicas intrude on the reconstruc-
tion range, causing aliasing artifacts. In other words, anti-
aliasing can be achieved if replicas Fn,m can be filtered out.
Therefore, anti-aliasing can be regarded as a process which
calculates filtered images from the sampled images, and con-
sequently, our objective is to find some mapping

for— / Fo(@)w(zo — z)dz

for any zo. Here, w(z) denotes some desirable spatial anti-
aliasing filter.

The notation defined here is listed in Table 1. An in-
troduction to sampling theory and aliasing can be found in

[FOLEY].

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

Table 1: Symbols and notation

z position on the image (pixel)

t time (frame)

¢ spatial angular frequency (rad/pixel)

w temporal angular frequency (rad/frame)
fo(z) imageatt=1o
f(z;t) image at ¢
fs(z;t) sampled image sequence

Fo(¢) the spatial spectrum of fo

F(¢,w) the spatio-temporal spectrum of f.
F.,(E ,w) the spatio-temporal spectrum of f,.
= spatial sampling frequency
Q temporal sampling frequency

Fn,m the replica of F centered at (=nZ, —mN)
w(z) spatial anti-aliasing filter
g(z,t) shift variant spatio-temporal filter
G(¢,w) the spatio-temporal spectrum of w

3.2 Constant Velocity Motion

First, let us consider the simplest motion, constant velocity
motion. In this case, the image at ¢ can be represented by

F(z;t) = fo(z + vo(to — 1)), (2)

where vo is the velocity of the pattern. Its spatio-temporal
spectrum is

Fgw) = /exp(zwt)dt/ Jo(z + vo(to — t)) exp(1éz)dz

/ Fo(€) exp(s€vo(t — to)) exp(rwt))dt
= 27 Fy(¢) exp(—1€voto)é(voé + w), (3)

where 6 is Dirac’s delta function and we used the equality

/exp(wv)dv = 278(u).

Equation 3 clarifies a very important fact: the spectrum
F can be separated from the replicas even though the spatial
spectrum Fo(€) ranges beyond the Nyquist frequency. Figure
2 illustrates this situation. The replicas can be filtered out
as shown in the figure if velocity v is known. Fortunately,
the velocity can be easily calculated from animation data
in graphics applications. Thus, an ideal anti-aliasing filter
in this case looks like!

é,,(f,w) = 278(voé + w). 1)

The linear filtering in the Fourier domain G, F, is equiv-
alent to convolution in real time-space, that is,

/ / Fo(z,1)6((z0 —) = (to — t)vo)dzdt. (5

This motivates us to study more general cases.

1Strictly speaking, the filter G, involves a convergence problem
because infinite animation sequences are assumed here. This will be
solved in the next section.

reconstruction filter

Figure 2: Spatio-temporal spectrum of constant velocity
motion.

3.3 General Motion

Let us consider general motion. When the image point zo
at to moves to 1 at t1, we denote the motion by

z1 = X(t1; Zo, to)- (6)
For example, the flow x, for constant motion is:
Xv(t; To,t0) = zo + v(t — to).
Note that the reciprocity generally holds from the definition

z = x(t x(to; z,t), %0).

To avoid convergence problems, a finite animation se-
quence should be considered. With the flow x, the sequence
can be described as:

f(z,t) = { OfO(X(to;z, t)) ifte[-T/2,T/2)

otherwise,

where T is the length of the animation. The sampled image
sequence are represented by

fuo(z,t) = f(2,0)) 8z —27k/S)8(t — 271/9Q),
k,l
T/2 =)

Aew) = 3 f/ L | fixttosz)

exp(1(¢ + nE)z + 1(w + mQ)t)ds

= Z Fn,m.

Next, let us consider the anti-aliasing filter g. Filtering
for constant motion, Eq. 5, can be rewritten as

//f,(:c,t)&(zo — xv(to; 2, t))dzdt.
By analogy, we set our filter kernel g as

g(z,t) = (1/T)w(zo — x(to; 7,t))(Ox/0%)to,
(1/T)w(zo — x(to; 7, t)) Dx(to; 2,8) (7)

291

SIGGRAPH 93, Anaheim, California, 1-6 August 1993

for space-variant filtering at (zo, t):

h(xo,to)=//f,(z,t)g(x,t)dxdt. (8)

Here, w(z) represents some appropriate anti-aliasing filter,
such as a sinc-function, Gauss function, box function, and so
on. The factor 1/T is the normalization constant, and D, =
(9x/0x) compensates for image magnification variation due
to spatially non-uniform motion.

Now, we prove that the filtering defined by Eq. 8 be-
comes an ideal anti-aliasing filter in the limit that T — co.
From the Parseval Identity, Eq. 8 can be rewritten as

afsf’ [[Bue,0)6" € wieaw
/2x)® / / o (§,0) G (€, w)dédw

E hn,m,
n,m

where G* denotes the complex con jugate of G. The function
G is the spatio-temporal spectrum of g, calculated by

(l/T)//w(zo — x(to; z,t))(9x/8z)
exp(:(éz + wt))dtdz

= (l/T)//w(zo —u)

exp(x(t; u, 10)¢) exp(iwt)dudt,

where u = x(%o; z,t). Then, the integral h, n can be eval-
uated as

h(zo, to)

G’(S,w) =

T/2
hnm = 1/(27)*(1/T) / exp(i(w + mQ)t1)dt,
-T/2

/fo (x(to; 21, 1)) exp(2(€ + nZ)z1)dz,

//w(zo — u) exp(—1x(t2; u, t0)€)

exp(—twtz)dudt,
/dﬁ/dw
T/2
= (I/T)/ exp(xmQt;)dt
/fo(x(to;:n,tl)) exp(inZz,)dz,

//w(zo —u)d(t1 — t2)8(z1 — x(t2; u,t0))dudts

[wtao - w)atain

T/2
/ exp(mnEx(t1; u, to) exp(axmQt1)dt, /T,
—7/2

where we used the reciprocity x(to;x(t1;u,%0),%1) = u.
Consequently,

Tlim hnm =/w(zo —u)fo(u)du(}im Kn(mQ;u)/T),

292

where K, (w;u) is the Fourier transform of the function k.,
kn(t;u) = exp(enZx(t; u, to)).

Obviously,
ho,o = /w(zo — u) fo(u)du.

On the other hand, when K, is not singular at w = mQ,
the aliasing pattern tends to 0, as

T!-linoo hpn,m = 0.

This completes the proof.

Note that K,(mQ, u) can be singular when, for exam-
ple, motion is periodic with a frequency of (m€/=), or con-
stant motion with a velocity of (mQ/nE).

3.4 Discrete Filtering
The filtering Eq. 8 can also be represented in a discrete

form. By setting E = 27 and Q = 2= (1 sample/pixel/frame
sampling), we have

//fa(w; t)g(z, t)dzdt

T/2 x/2
(/) / at / F(zs (1)

h(l‘o,to) =

-T/2 —X/2
D " 6(z — k)b(t ~ 1)dtdz
k,l

X/2 T/2

WT) Y Y flkDw(zo — x(to; k1)
k==X[21==T/2
Dy (to; k,1) (9)

for T-frame image sequences at the X pixel image resolu-
tion. Since Eq. 9 is a finite weighted sum of the sampled
images, it can be directly computed.

The magnification factor D, = (8x/dz) compensates
for image distortion due to non-uniformity of motion flow.
For spatially uniform motion (more generally, incompress-
ible flow), D, = 1. Furthermore, since D, (to;t,t) — 1 as
t — 1o, we can assume

D, ~1,

when the filter size T is small. If non-uniformity is not
negligible, we have to evaluate D, point by point. Analytic
formulae for D, are given in the Appendix.

For practical implementation, we slightly modify the
filtering equation Eq. 9. By assuming local uniformity of
motion flows, we have

h(zo,) = (1/T) Y _ f(k; hw(x(lz0,) — k), (10)

K,

where we used the uniformity z —y = x(t;z,t') — x(t;9,t').
The advantage of Eq. 10 over Eq. 9 is that only one flow
x(I; 2o, to) should be traced for (zo,?o) rather than all flows

X(to; 1) k)

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

The normalization factor (1/T) relies on

T/2
T}Enoo(l/T) Z/ ; 'UJ(X(I; zo,to) - k) =1,
I==T/2

and would cause a normalization problem for finite T'. Thus,
it is better to adopt explicit normalization such as

h(zo,t0) = Z F(k;Dw(x(l; 0, t0)—k)/ Z w(x(l; 2o, t0)—k).

Kkl k1l
(11)

4 Algorithm

This section shows a simple algorithm for applying the anti-
aliasing filter. When only one velocity field occupies the
image, the only problem is to calculate the flow x(¢; zo, to).
However, when more than two velocity fields overlap, the
filter should be separately applied because the theories rely
on the uniqueness of the field. This happens when the pro-
jections of differently moving objects overlap (Figure 3).

Thus, the keys to the implementation are how to evalu-
ate the motion flow x¥ and how to separate fields of different
velocity. To deal with multiple flows, we adopt the filtering
equation Eq. 11, assuming local uniformity of flows.

Data From animation models, we receive animation data
for the sequence, such as transformation of objects and cam-
era parameters. From the rendering process, RGB values,
z-values, and ob ject-id values are provided for each pixel at
each frame, for example, in the form of G-buffers [SAITO].
Here, the object-id’s are only used to identify object mo-
tion, and can be omitted for walk-through scenes. Let us
denote these values for the pixel (kz,ky) at the frame ! by
rgb[kz][ky][1),2[k=][ky][], and id[kz][k,][1], respectively.

As the work space to capture multiple flows, we have
a list structure of rgb, z, and « for each pixel, denoted by

18b 100, [iX][iy], 2 510w [iz][iy], and asiouiz][iy]-

Pixel Tracing We now treat two-dimensional images.
Let us denote two-dimensional vectors and their z,y-
components by using the arrow and suffix notation, such
as k = (kz, ky).

The motion flow, ¥(I; Fo, lo) = (x=z, Xy), corresponding
to the sample point Fo= (Koz, koy) at t = lp, can be easily
calculated from the animation information, the object-id,
A, and the z-value (Figure 3). Let the transformation from
the object coordinate of Object A to the screen space at
t be Ta(t). Then, the corresponding object point pa =
(24,94, 24, wa) is given by

pa = (koz, koy, z[koz][koy]llo], 1)T5" (lo)-

At t = 1, the object point pa is projected by Ta(l), and
thus, the flow ¥ and the corresponding depth {({; Fo, lo) can
be calculated as

X Fo b)) = (z/w,y/w)

Object A

Object B

N

object space

%(t;ko,lo)

screen

Figure 3: Pixel-tracing.

ko, o) = z/w.
(z,9,2,w) = paTa(b)
(Koz, Koy, 2[koz][koy][l0], 1)
T3 (lo)Ta(l) (12)

When the sample point misses an object, the filtering
can be applied in the following way. In the example in the
Figure 3, Object B fails to hit the sample point at Fo,t =
lo, but pixel tracing from E, = (k2z, k2y),t = 12, reveals
that Object B should exist in the reconstruction area of
ko,t = lo because the traced point x(lo;ic‘g,lg) lies in the
area. Therefore, we trace the flow for Ko by

Ymias(l; EO,‘O) = f(l! E2)12)+ Ay (13)

where . .
A= ko -)-('(lo; kz,lz).

Separation and Summation To separate different ve-
locity fields, we adopt a simple rule, that is, when the dif-
ference between two flows is smaller than some threshold,
we regard them as the same flow.

This can be described as follows. If both of the inequal-
ities,

1Fo — R(lo; kx,)|l < den, (14)
and . .

1k = X(l; ko, bo)|l < den, (15)
hold, the two sampled data are judged to belong to the same
flow. Here, ||-]| denotes some norm on the image plane. The

threshold d;, can be determined, for example, according to
the diameter of the support of the filter kernel w(Z).

In the example in Figure 3, Inequality 15 is not true, so
the two samples are processed as different flows. Note that

293

SIGGRAPH 93, Anaheim, California, 1-6 August 1993

the projection points of the same object do not necessarily
belong to the same flow because of perspective.

With this criteria function, same_flow(), which returns
1 when two samples are judged as being in the same flow
and 0 otherwise, the actual filtering for each velocity flow
becomes

1gby,, = ZZsame_ﬂow(l}.,l;ic'o,lo)w()‘('(l;EO,lo)—75)
L
rgblk;][k,][1)/ Y _ same flow()uw()

aow = sameflow(u()/ D w(),

Zflow = min(zsiow, C(l; Fo, b)) (16)

Here, o represents the ‘coverage’ of this flow. Note that the
summation with & can be calculated only in a neighborhood
of the flow ¥ when the filter w(Z) is compactly supported.

At each pixel, we store the calculated RGB values, a-
values, and z-values for all flows as a list, like the A-buffer
structure [CARPENTER]. After the filtering, we sort the
list with respect to the z-values at each pixel, and the final
RGB values are determined by simple a-blending in the
order of the sorted list, from near to far,

rgbfinal = Qflowl llgbjlowl + (1 = Q' flowl)Q’ﬂow2 rgbﬂouﬂ +..
17

Procedure The procedure for filtering the frame lo can
be summarized in the following way.

1) For each sample, Fo, at frame I = lo, do the following
for all frames ! within the filter.

i) Calculate R(I; i;o,lo) according to Eq. 12.
ii) Calculate the weighted sum according to Eq. 16.

2) For l # lp within the filter, do the following for all the
samples, E.

i) Calculate the flow ¥(lo; ,1) according to Eq. 12.

ii) For all samples Fo' at lo such that w(l?c', -
X(lo; k,1)) # 0, do the following.
a) If E, I belongs to any flow listed for E{,, lo, skip
b) and c).
b) Calculate the flow X‘miss(ll;k_;{),lo) according

to Eq. 13, and calculate the weighted sum
according to Eq. 16.

c) Append the result to the list of kj, lo.
3) For each pixel at ly, sort the resulting list with respect

to the z-values and apply alpha-blending according to
Eq. 17.

As this filter involves a pixel tracing process, we call it
the pizel-tracing filter.

294

5 Experiments and Discussion

The first experiment shows the influence of filter size, T.
The test pattern is an almost horizontal (1 degree from the
horizon) thin rectangle with the width of 1/8 pixel, con-
stantly moving in the vertical direction at a speed of 0.22 =
11/50 pixel/frame. Note that limr— (hs0,11/T) # 0.

Figures 4-a, -b, and -c show the original image, and
the results of applying filters of various sizes. As the filter
kernel w(z), we used the box function with one pixel area.
Figures 4-d and -e show the analytic solution and the root-
mean-square error of the filtered results with respect to the
filter size. As shown in the figure, effective anti-aliasing was
achieved with a filter size 128. The remaining error comes
from the replica Fso 11.

The second experiment shows an example of non-
uniformly accelerated motion. The test pattern is rotating
radial thin rectangles. As shown in Figure 5, aliasing was
mostly removed with the 32-frame filter.

The final experiment shows application to a more prac-
tical image sequence taken from a walk-through scene in
‘Také Tera.” In the sequence, only the camera moves and
everything else is fixed in space. The original images were
synthesized by using the GL library on the IRIS worksta-
tions at a resolution of 256 x 256. The scene consists of
about 4M polygons. Figure 6 demonstrates the efficiency
of the algorithm, where the severe aliasing artifacts seen in
the original image were largely removed. The filter size was
16 frames.

The execution time is about 30 CPU seconds per frame
on an IRIS Crimson R4000-50 at 256 x 256 resolution. The
computation cost is directly proportional to n; X ny X ne,
where n; X ny is the image resolution, and n. is the fil-
ter size. Considering that frame-by-frame recording onto a
VCR takes about thirty seconds per frame, this powerful
anti-aliasing is almost free! Furthermore, as the filtering
is simple image processing with pixel-level independence, it
might be possible to design parallel hardware to execute it
in real-time, which would be attractive for visual simulators
and virtual reality applications.

Future work includes application to reflected /refracted
images, and coupling with stochastic sampling techniques.
The algorithm relies on transformation between the screen
space and the object space. Although conventional ray
tracers cannot provide the transformation, the beam trac-
ing/pencil tracing approach [HECKBERT,SHINYA] can
calculate it in the form of system matrices and thus may
be applicable to the filtering.

Since stochastic sampling techniques are powerful tools
for anti-aliasing, it is an attractive idea to combine the two
approaches. If we jitter the sample point of each pixel
at each frame, the pixel-tracing filter acts exactly as a
purely spatial filter for objects that are steady on the image
plane. This means that spatial stochastic super-sampling
can be performed by the pixel-tracing filter with only one
point per pixel per frame sampling. This could also reduce
the problems with constant velocity motion in the case of
nZve = mQ, which we observed in Figure 4.

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1993

6 Conclusion

A new type of efficient anti-aliasing filter, the pixel-tracing
filter, was proposed for animation sequences. The filter
sums sub-pixel information using the correlation among im-
ages calculated from animation information. Theoretical
studies prove the ability of the filter, and experimental re-
sults demonstrate the efficiency.

The algorithm is simple image processing implemented
as post-filtering. The computational complexity is of con-
stant order with regard to the complexity of scenes (e.g.,
number of polygons). With the pixel-tracing filter, effective
anti-aliasing can be completed for animation sequences with
a very modest computational cost.

Acknowledgments

The author would like to thank the Siggraph review-
ers, whose comments greatly contributed to improving the
theoretical part. He also wishes to thank Takahiko Kamae,
Rikuo Takano, and Kazuyoshi Tateishi for their adminis-
trative support and encouragement, Atsushi Kajiyama for
his technical support, and Toki Takahashi, Taka Saito, and
Toshi Tanaka for helpful discussion.

References

[CARPENTER] Loren Carpenter, ‘The A-buffer, An An-
tialiased Hidden Surface Method,” Computer Graphics
18, No.3, pp.103-108, 1984.

[CATMULLS84] Edwin Catmull, ‘An Analytic Visible Sur-
face Algorithm for Independent Pixel Processing,’
Computer Graphics 18, No.3, pp.109-115, 1984.

[COOK84] R. L. Cook, T. Porter, L. Carpenter, ‘Dis-
tributed Ray Tracing,” Computer Graphics 18, No.3,
pp.137-145, 1984.

[COOKS86] R. L. Cook, ‘Stochastic Sampling in Computer
Graphics,” ACM Trans. Graphics, 5, No.1, pp.51-57,
1986.

[DIPPE] M. A. Dippé, ‘Anti-aliasing through Stochastic
Sampling,” Computer Graphics 19, No.3, pp.69-78,
1985.

[FOLEY] James D. Foley, Andies van Dam, Steven K.
Feiner, John F. Hughes, ‘Computer Graphics Princi-
pal and Practice,” Addison-Wesley, 1990.

[GRANT] Charles W. Grant, ‘Integrated Analytic Spatial
and Temporal Anti-Aliasing for Polyhedra in 4-Space,’
Computer Graphics 19, No.3, pp.79-84, 1985.

[HAEBERLI] P. Haeberli, K. Akeley, ‘The Accumulation
Buffer: Hardware Support for High-Quality Render-
ing,” Computer Graphics, 24, No.4, pp.309-318, 1990.

[HECKBERT] P. S. Heckbert, P. Hanrahan, ‘Beam Trac-
ing Polygonal Objects,” Computer Graphics, 18, No.3,
pp.119-128, 1984.

[LEE] Mark E. Lee, Richard A. Redner, and Samuel P.
Uselton, ‘Statistically Optimized Sampling for Dis-
tributed Ray Tracing,” Computer Graphics 19, No.3,
pp.61-67, 1985.

[MITCHELL] D. Mitchell, ‘Spectrally Optimal Sampling
for Distributed Ray Tracing,” Computer Graphics 25,
No.4, pp.157-164, 1991.

[NETRA] A. N. Netravali and B. G. Haskell, ‘Digital
Pictures - Representation and Compression,” Prenum
Press, 1988.

[SAITO] Takafumi Saito and Toki Takahashi, ‘Comprehen-
sible Rendering of 3-D Shapes,” Computer Graphics
24, No.4, pp.197-206, 1990.

[SHINYA] M. Shinya, T. Takahashi, and S. Naito, ‘Prin-
ciples and Applications of Pencil Tracing,” Computer
Graphics, 21, No.4, pp. 45-54, 1987.

Appendix: Calculation of D,

Here, we derive D, in Eq. 9 for two-dimensional im-
ages. We assume motion flows ¥(t;zo, yo,%) represented
by Eq. 12. In the two-dimensional case, D, becomes the
Jacobian of ¥,

D = (ax‘”/azo)yo (3xz/8yo),o
* (Oxy/9z0)yo (9xy/0Y0)=0

(aXz/azo)yo(3Xy/3yo)zo
—(9x=/9%0)20(dxy /%0)yo-

By setting the translation matrix
T3 (t0)Ta(t) = {ri;},

the partial deviation (8xz/8%0)yo, etc., can be calculated
as

(0x=/9%0)yo

(1/w)(82/8z0)yo — (z/w?)(dw/dz0)yo
= (1/w)(m1 = (nz/n.)7e1) — (z/w?)

(Tu - (nz/nz)T:M);

where # = (nz,ny,n:) is the normal vector of the object
surface at p4, and we used

(0z/0z0)yo = (92/0%0)y0,20 + (920/0%0)y0(92/d20)z0,40

= 111 — (nz/n:)731,

and so on.

295

SIGGRAPH 93, Anaheim, California, 1-6 August 1993

(a) Original (b) Filter size = 32

(c) Filter size = 64 (d) Ananlytic solution

Relative RMS
1.2}

(a) Original image

10° 10' 10° 10°
Filter size

(e) Relative root-mean-square error

Figure 4: Thin rectangle.

(b) Filtered image

Figure 6: Také Tera(Bamboo Temple).

(a) Original image (b) Filtered image

Figure 5: Rotating thin rectangles.

296

