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Abstract

Pencil tracing, a new approach to ray trac-
ing, is introduced for faster image synthesis with
more physical fidelity. The paraxial approxima-
tion theory for efficiently tracing a pencil of rays
is described and analysis of its errors is conducted
to insure the accuracy required for pencil tracing.
The paraxial approximation is formulated from a
4x4 matrix (a system matrix) that provides the
basis for pencil tracing and a variety of ray trac-
ing techniques, such as beam tracing, ray tracing
with cones, ray-object intersection tolerance, and
a lighting model for reflection and refraction. In
the error analysis, functions that estimate approx-
imation errors and determine a constraint on the
spread angle of a pencil are given.

The theory results in the following fast ray
tracing algorithms; ray tracing using a system ma-
trix, ray interpolation, and extended ‘beam trac-
ing’ using a ‘generalized perspective transform’.
Some experiments are described to show their ad-
vantages. A lighting model is also developed to
calculate the illuminance for refracted and reflected
light.

CR Categories and Subject Descriptors: 1.3.3 [Com-

puter Graphics]: Picture/Image Generation; 1.3.7 [Com-

puter Graphics]: Three-Dimensional Graphics and Re-
alism

Additional Keywords and Phrases: Ray Tracing, Parax-
ial Theory

1 Introduction

The ray tracing algorithms [1] provide powerful tools for
creating realistic images. However, from a practical view-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1987 ACM-0-89791-227-6/87/007 /0045 $00.75

point, there have been problems such as high computa-
tional cost and aliasing. Many attempts have been made

to tackle those problems, and some of them have pro-
duced good results by tracing a pencil ! (or bundle) of
rays, instead of an individual ray. However, as the meth-
ods lack sufficient mathematical bases, they are limited
to specific applications.

Heckbert proposed a method called ‘beam tracing’[2]
which works well for reflecting polygonal objects. His
method uses a pencil to be traced by introducing affine
transformations in an object space. Unfortunately, the
method finds only limited applications because of the way
in which it approximates refractions. Moreover, since
an error estimation method has not been proposed for
guaranteeing the image accuracy, the accuracy cannot be
controlled.

Amanatides proposed a ‘ray tracing with cones’ tech-
nique for anti-aliasing, fuzzy shadows, and dull reflec-
tions(3], where a conic pencil is traced. However, it failed
to present a general equation for characterizing the spread-
angle change of a conic pencil through an optical system.
Such an equation is also required for the calculation of
ray-object intersections proposed by Barr[4], where the
calculation tolerance is related to the pencil spread-angle.
In a lighting model, the equation will also play an im-
portant role, because the illuminance distribution results
from the calculation of how the light pencils converge and
diverge according to reflections and refractions.

This paper describes the theory of pencil tracing and
its applications to provide general mathematical tools for
efficiently tracing a pencil and also for conducting error
analysis to insure the image accuracy. In the theory, a
linear approximation approach is taken, because, in gen-
eral, the exact behavior of a pencil cannot be analytically
obtained. The theory is based on the paraxial approxima-
tion theory([5,6], where a pencil transformation through
an optical system is formulated from a 4x4 matrix (a
system matrix). This formulation is well-known in op-
tical design and electromagnetic analysis[6]. The error
analysis provides functiorns that estimate approximation

IThe rays that are near to a given axial ray are called paraxial
and are said to form a pencil.

45




7\ SIGGRAPH '87, Anaheim, July 27-31, 1987

errors and determine a constraint on the spread angle
of a pencil to insure the required accuracy of generated
images.

Applications of the theory result in the following fast
ray tracing algorithms: ray tracing using a system ma-
trix, ray interpolation, and extended ‘beam tracing’ using
a ‘generalized perspective transform’. Some experiments
are described to show their advantages. A lighting model
from which to calculate the illuminance for refracted and
reflected light is also developed.

2 Paraxial approximation theory

The paraxial approximation theory provides a linear ap-
proximation for ray changes due to refraction, reflection,
and ‘transfer’, where ‘transfer’ means propagation in a
homogeneous medium. A linear ray change can be rep-
resented by a matrix, and thus, paraxial ray tracing by a
matrix product. Since the paraxial approximation theory
seems little known in computer graphics today, it will be
briefly reviewed here. For details, see [5],[6].

2.1 Definitions

Ray:

A parazial ray is a ray extending along the vicinity of
a given axial ray 2. Thus, it is appropriate to represent a
paraxial ray with respect to the axial ray. In the theory,
a paraxial ray is represented by a four-dimensional vector
(ray wector) in a coordinated system formed with respect
to the axial ray (ray coordinate system).

Ray coordinate system In Figure 1, an orthog-
onal coordinate system #;-i,-2, called a ‘ray coordinate
system’, is used to represent a paraxial ray. The origin O
is a point on the axial ray, and the Z-axis is the direction
of the axial ray. The #;- and #;-axes can be arbitrar-
ily chosen, and the #;-2, plane is perpendicular to the
2-axis.

Ray vector for a paraxial ray Generally, a ray
is uniquely specified by its direction and the position it
passes. Thus, referring to £; and &, a paraxial ray can be
represented by two kinds of vectors: the position vector
@ = (z122)' to represent the intersection of the paraxial
ray with the #;-%, plane relative to the origin O, and
the direction vector & = (£1£2)! which is the projection of
the normalized ray direction vector s of the paraxial ray
onto the #;-%, plane. Combining those two vectors, the
paraxial ray is defined by a four-dimensional vector ¢ at
O by the equality

2 An axial ray has nothing to do with the axes of optical systems
having special physical or mathematical meanings in the systems,
such as a lens axis. An adequate ray can be chosen as the axial ray
for a pencil to trace, e.g., the center line of a cone in the case of a
conic pencil.
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Figure 1 Definition of ray vector
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The four-dimensional vector v is called a ray vector.
Pencil:

A pencil is made up of an axial ray and a bundle
of paraxial rays around it represented by ray vectors. A
pencil is mathematically represented by a domain in four-
dimensional space, z-£, representing the deviations in po-
sitions and directions of its paraxial rays from its axial
ray. In image synthesis, all rays to be traced usually start
at a common point, or a pin hole. In this case, a pencil
can be simply represented by its direction deviation from
its axial ray at the pin hole, or the pencil spread angle.

System matrix:

When a ray goes through an optical system, the ray
vector changes due to reflections, refractions and trans-
fers. The deviation of a paraxial ray from the axial ray
can be chosen small enough that the transformation rep-
resenting a ray vector change is regarded as linear and
can be represented by the matrix

¥ =Ty,

where 1 is the input ray vector and ¢’ is the output
vector. T is a 4x4 matrix called a system matrix. When
a system consists of two sub-systems in cascade and their

. respective system matrices are known, the overall system

matrix is simply the product of the two matrices.

2.2 System matrices

In computer graphics, optical systems usually consist of
homogeneous regions separated by smooth surfaces, where

any optical phenomenon can be represented by a reflec-
tion, a refraction or a transfer. Therefore, an overall
system matrix for any system can easily be obtained, if
system matrices are given for each element system, i.e., a
transfer, a reflection, or a refraction. Surface smoothness
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is an essential condition for the system matrix approach;
the surface in a system should have continuous second-
order differentials. If discontinuities or edges exist in a
system, it should be spatially divided into sub-systems so
that no system contains an edge.

Element-system matrices are given analytically by us-
ing Snell’s law and geometry. They are formulated as
follows:

(1) Transfer:

In a homogeneous region, rays are straight. Thus, the
propagation along the axial ray from z = 0 to zy shown
in Figure 2 is represented by

(o 7): @

where each element is a 2x2 matrix and 1 means a 2x2
identity matrix.

(2) Refraction:

Consider a refraction on the surface T in Figure 3.
The optical indices of the two media are n and n’. At the
origin O, the incident axial ray meets . The orthogo-
nal coordinate systems #;-&, and 2}-%} are the incident
ray coordinate system and the refracted ray coordinate
system, respectively, and both coordinate planes are per-
pendicular to their respective axial rays. Another or-
thogonal coordinate system ;-1 is perpendicular to the
normal of ¥ at O and is used to represent . For sim-
plicity, the coordinates are chosen such that &;=1d,=3%).
The formulation of the system matrix for a refraction on
Y is performed by approximating ¥ to a paraboloid; an
approach somewhat similar to Barr’s tangent plane ap-
proximation[4]. Thus, the transformation is analytically
derived using Snell’s law as

_ 00! 1
T - ( (e/t)—the-l (n/n/)(elt)—let > ) (2)

).

& &

o= (& :"’:"’),6'=<‘:‘§":“ o
T U Ty U T U Ty

h =cos§ — (n/n')cosb,

axial ray

paraxial ray

Figure 2 System matrix for transfer

and &; is a unit vector of the #, axis direction. When
the coordinate systems are chosen as in the figure, the
matrices © and O’ are diagonalized as

cosf 0 , [ cos@ 0
o3 1) =" 1)

The matrix Q is the curvature matrix of ¥ in the 4;-1,
coordinate. For example, when ¥ is a sphere of radius r,

@= ( 1ér 1(/)1' > :
(3) Reflection:

The system matrix for a reflection is derived mathe-
matically as a special case of a refraction. It is obtained
by simply replacing §’ with (7—6) and n’ with n in Eq.(2).

3 Tolerance and error analysis

In this section, pencil tracing approximation errors and
tolerances for calculated ray-object intersections are dis-
cussed to show that they are given as functions of the
system matrices. This leads to a discussion of how to
determine a limit on the spread angle of a pencil in order
to retain accuracy and fidelity in calculated images.

3.1 Tolerances

The criterion used here is similar to Barr’s[4], which is
based on pixel width and ray sampling interval. Since the
sampling interval limits the resolution of a ray-traced im-
age, an approximation error smaller than the interval has
little effect on the resolution. Although Barr’s tolerance
equation is not applicable to refracted or reflected pen-
cils, it can easily be extended by using a system matrix.

Consider the situation shown in Figure 4, where § is
a four-dimensional vector representing a ray interval, i.e.,
a sampling interval of position and direction, and

_ft t2
=1 )

8
e
Y

incident ray

refracted ray

Figure 3
Refraction of a pencil. A circle with a dot denotes
a vector emarging perpendicular to the page.
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is an overall system matrix. The sampling interval of the
intersection points on the &;-Z, plane becomes ( t1 to ) 6,
and the tolerance 7 on the plane is given in terms of pa-
rameter p as

r=pl(tr t2)8], (3)
where p indicates the ratio of the tolerance to the inter-
val, and it represents the image accuracy. When one-
pixel-width resolution is required, p should be less than

1/2. Equation (3) is also applicable to Barr’s intersection
calculation method.

3.2 Error estimation function

When a paraxial ray 3™ is changed into %°“ through
an optical system, ¥%°* may be expressed in terms of a
power series of 1. The i-th component of the vector
1°% is represented by

4 4
@) = S tPW™);+ 3t )+
J=1

= 4 (484 o),

where tg) is an element of the system matrix, and

t3) = 02(y°); /Oy );0(%™ .

Since higher-order terms are considered to be neg-
ligible for small %™ value, the second-order term 4
alone is enough to estimate the linear approximation er-
ror (,lpout _ ,ll)lout)'

The coefficients tf?,z for each element system, e.g., re-
fraction, can be derived analytically and they can be
applied to general systems. However, a straightforward
computation of A1 is rather cumbersome because of the
complicated forms of its elements. Furthermore, since
the absolute values of error vectors, 4z and 4&, are far
more important than their directions in terms of error
estimation, we introduce the more compact error estima-

tion functions, e, and e, to estimate the absolute values
of errors. This results in the expressions

ex(20,60) = Azg+ Bzobo+ CE
> |4e
and
ee(z0,&) = Dz} + Exobo+ FE}
= | 4¢l, (4)
where

Az
(m>=”

To = |T0‘7 60 = lfol
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Figure 4 Sampling interval and tolerance
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A - F are constants and depend on the system matri-
ces, axial incident angles, optical indices, and so on. As
the derivation is very complicated, the details are omitted
here. The results are presented in the appendix.

Equations (3) and (4) provide the condition for pencil
tracing with the required accuracy. If all paraxial rays in
a pencil satisfy the inequality

ez(z'O,EO) S T, (5)
the generated image is accurate enough.

In the case where a pencil emerges from a pin hole,
zo is 0 and Eq. (5) is simplified as

ce <, (6)

to provide the maximum pencil spread angle for the re-
quired accuracy.

4 Applications

Since the theory describes general pencil behaviors, it
can be used in many places in computer graphics. In this
section, three fast ray tracing methods are proposed, and
a general illuminance formula for refracting and reflect-
ing environments is introduced that demonstrates actual
applications of the theory.

4.1 Pencil tracer as a fast ray tracer

(1) Ray tracing with system matrix:

This method is a straight-forward installation of the
theory, and accelerates image systhesis of smooth refract-
ing and reflecting objects by replacing conventional re-
fraction and reflection calculations with matrix-vector
manipulations.

Paraxial rays are traced by a system matrix, calcu-
lated by Egs. (1) and (2). The pencil spread angle is
controlled to satisfy tolerance condition (6). Since ray
tracing with a system matrix is not applicable in the
neighborhoods of object edges because of the smoothness
requirement, individual rays in those regions are traced
with a conventional ray tracer.




@ Computer Graphics, Volume 21, Number 4, July 1987

The procedure is as follows:

1) Divide the screen into n x m initial domains of a
certain number of pixels®. Do the following process
for each domain:

2) Set the axial ray at the center of a domain, and
trace it with the conventional ray tracer. Calculate
the system matrix.

3) Check the smoothness condition (to be discussed
below). If an edge exists in the domain, trace all
the rays with the conventional ray tracer.

4) If there is no edge, calculate the tolerance and the
maximum pencil-spread angle by using Eqs. (4)
and (6). Then, according to the maximum pencil-
spread angle, do the following;:

a) Trace all paraxial rays in the domain with the
system matrix if the maximum spread angle of
the domain is smaller than that of the pencil.

b) Trace all paraxial rays with the ray tracer, if
the maximum pencil spans an area less than
one pixel wide.

¢) Otherwise, divide the domain into sub-domains
so that their maximum spread angles are less

than that of the pencil. Repeat 2)- 4) for each
sub-domain.

Anti-aliasing by subpixel sampling can be achieved in
the same way by using the system matrix, except in the
neighborhood of an edge.

In our preliminary implementation, the smoothness
condition is roughly checked by comparing the ray trees
among the neighboring domains, and the condition is
assumed to be satisfied when no difference is detected
among the ray trees. It is possible for an object smaller
than the initial domain area to vanish from the image.
This problem can be solved by estimating the distances
between an axial ray and object surfaces, as in the case of
ray tracing with cones [3]. Amanatides’ method can deal
with the estimation for simple objects such as spheres
and polygons. It is considered that the bounding volume
techniques([7] among others) will be effective for this es-
timation. However, further investigation is required to
solve the problem.

(2) Ray interpolation:

In this method, the intersection point and the direc-
tion of an interior paraxial ray are linearly interpolated
without a system matrix calculation in order to provide
further computational saving.

Consider the situation shown in Figure 5, where two
rays, 1o and %o + 6, are traced and & and @ give their

3Larger initial domains do not necessarily lead to faster image
synthesis. There is a certain point in a domain area (5x5 pixels
in our experiment) beyond where the speed of image synthesis no
longer improves.

Yo+ 0 lx\
~ 1
Yo + ab \>:\* o
> >l
¢0 I -“$0
o U
Yo — 06 &
optical system object

Figure 5 Ray interpolation

intersections with the object. A paraxial ray represented
by %' = 1o + aé can be considered to intersect with the

object at the point that can be linearly interpolated by
the expression

2 =ad + (1 - a)a.

The direction vector of the paraxial ray can also be in-
terpolated in the same manner.

A precise analysis of the interpolation error is not an
easy task. However, if a second order approximation is
good enough to estimate the true a/, the error can be
estimated by evaluating first and second order interpola-
tions. For this, one more intersection of another ray is
necessary. For example, when the intersection a/ ; of the
ray o — 6 is given, the error is estimated by

eint = |(second order interpolation)—(liner interpolation)],
where

(second order interpolation) =
ala—1)2 /2 + (1 —a)(1+a)zy + a(l +a)z;/2

In case that the second-order approximation is not good,
eint simply checks the linearity of @ with respect to a.

Comparing with the system matrix method, the ray
interpolation has the advantage in computation speed,
but a disadvantage in the precision of the error estima-
tion.. Thus, it is considered that the method is effective
for tracing a thin pencil, e.g., in the case of subpixel sam-
pling for anti-aliasing. This will be shown in the section
5.

Note that if linearity is assumed for brightness I(z/),
the brightness can also be interpolated by

I(&) = al(2) + (1 — a)I(=}).

(3) Generalized perspective transformation:

This method is a modification of Heckbert’s beam
tracing[2], and it is effective for refracting and reflect-
ing polygonal environments. Although the beam tracing

49




N
AN

ERECECIFRX]

V//\ SIGGRAPH '87, Anaheim, July 27-31, 1987

screen pin hole

optical system

object

Figure 6 Generalized perspective transformation

method works well for reflections, it provides a rather
poor approximation for refraction. It assumes either that
incident rays are nearly perpendicular to a surface, or
that all rays are parallel.

The system matrix provides a better approximation
using local linearity. Consider the situation shown in
Figure 6. The ray ¢ = (0,£)* goes from the pin hole to
the object point &’ through the optical system, where &/
is represented in the ray coordinate system. Using the
system matrix, it is expressed as,

¢ = A¢,

where A is a 2x2 sub-matrix of the system matrix. The
screen point &, is directly calculated by £, wherein the
linear approximation is represented by

z, = S¢,

where S is a 2X2 matrix. Thus, the transformation from
an object point to a screen point is given by

z, = SA'd = P, (7

Here, P is considered as a ‘local’ perspective transfor-
mation for refracting and reflecting systems. The trans-
formation P coincides with the usual perspective trans-
formation for a transfer, and with the ones of the beam
tracing for a reflection and the perpendicular incident re-
fraction.

The transformation can be implemented in almost the
same way as the beam tracing: a pencil formed by a
polygon boundary is approximated by a pyramidal pencil
that is represented also by a polygon on the &-plane or
on the screen. The system matrix is calculated by Egs.
(1) and (2), and the polygons in the object space are
mapped onto the screen by Eq. (7) to allow searching
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for visible polygons through a polygon clipping technique
and a hidden surface technique by referring to z-values
in the ray coordinate system.

Anti-aliasing can be performed by the techniques for
the scan line algorithm. Errors can be estimated by using
Eq. (4), and dividing the pencil can assure image accu-
racy though this has not been implemented yet. This
method is free from the edge problem of the system ma-
trix.

4.2 TIlluminance formula

A light is converged or diverged by refractions, and reflec-
tions on curved surfaces. This makes a variety of shadow
patterns caused by light concentration. Conventional il-
lumination models fail to simulate this phenomena and
they create unnatural sharp shadows for transparent ob-
jects. Kajiya succeeded in creating realistic shadows of
transparent objects by using his powerful rendering equa-
tion and a Monte Carlo method[8]. However, there are
two problems with his method. First, the equation he

Figure 7 Light pencil emitted from a point source
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used is based on the inverse square law of light inten-
sity which is not valid for refracted or reflected light.
Strictly speaking, the calculated illuminance is theoreti-
cally incorrect. Second, it requires a tremendous amount
of computation time, even for a very simple situation.

It is easy to extend the intensity law by using a system
matrix[6], and the illuminance is analytically calculated
for point light sources and parallel light beams when us-
ing it. Consider a pencil emitted from a point source and
passing through an optical system onto an object sur-

face, as shown in Figure 7. For simplicity, assume that
the same medium, e.g. air, surrounds both the source
and the object. Let the luminous intensity of the source

be I, the illuminance on the surface E, and the trans-

mittance of the system ¢.. Then, energy preservation is
represented by
t,1d) = EdS,

where df2 is the emitted pencil solid angle, and dS is the
illuminated area on the surface. Using the system matrix
and the ray coordinate systems gives

)-(22)(2)
~(5) - (3)

and d? and dS are given by

dQ) = |dé1d€s|, and dS = |dzidz,/ cosal,

where « is the angle between the axial ray and the surface
normal. Thus, the illuminance is given by

E =t.I cos a|dédé,/dzdzy| = .1 cosa|l/det(B)|. (8)

In the case of a transfer, det(B) is 2%, where z is the
distance between the source and the illuminated point,
and thus, Eq. (8) represents the inverse square law. How-
ever, for a refracted light pencil, the inverse square law
is not valid, because in general det(B) # 22.

Likewise, for a parallel light source, it is derived that

E =t Icosa/|l/det(A)|. (9)

Using Eq. (8) instead of the inverse square law, Ka-
jiya’s equation becomes perfectly correct. However, for a
simple situation where point sources illuminate transpar-
ent objects, the pencil tracer traces light pencils from the
sources, simulating caustics and shadows more efficiently.
This becomes more distinctive in the case of the proposed
generalized perspective transformation for polygonal ob-
jects, as will be shown in Section 5. Furthermore, the
illuminance formula (8) and the generalized perspective
transformation can be applied to Nishita and Nakamae’s
radiosity method[9] for simulating interreflection between
both refracting and diffusive polyhedra.

5 Ex;;erimental Results

Figure 8 shows an image generated through ray tracing
with a system matrix and anti-aliased by nine rays per
pixel subpixel-sampling using the ray interpolation tech-
nique. The computation time is about 230 seconds on a
VAX11/780 for 256x256 pixels, which is 7.6 times faster
than our conventional ray tracing program. Since ray in-
terpolation is a computationally inexpensive process, the
improvement in speed becomes more significant as the
subpixel sampling rate increases.

Figure 9 shows the ratio of the CPU time of the pencil
tracer to the time of the conventional one, with respect
to the number of ray samples per pixel. The time ratio
decreases to less than 1/10 as the sampling ratio increases
to 49. This suggests that the method is particularly effi-
cient in creating ‘high quality’ anti-aliased images. The
tolerance used here is one-half pixel width, or p= 1/2.

Figure 10 shows the error distribution of the image,
where the error is measured by the distance between ray-
object (checkerboard) intersections obtained by the pen-
cil tracer and by the ray tracer normalized by one pixel-
interval on the checkerboard. Errors are less than the
specified tolerance, 1/2, in over 99.8% of the image area,
and the largest error is only 0.66 pixel width. This sug-
gests that errors are estimated strictly enough. Since the
error estimation is a worst case estimation, the actual er-
rors are considered to be much smaller than the tolerance
in most areas, as shown in the figure.

Figure 11 shows an image of a transparent polyhedron
consisting of 100 polygons generated by the generalized
perspective transformation without error estimation and
anti-aliasing. The illuminance on the three-colored rect-
angle is calculated by illuminance formula (8), simulating
the light pencil concentration effect caused by refractions.
The shadows and the image are created individually, and
each computation time is about 200 seconds and 74 sec-
onds, respectively, on a VAX11/780 for 512x512 pixels.
The ray tracing program takes about 49 minutes and it
creates only a non-shadowed image using a rectangular
solid bounding volume. It is estimated that it would take
several tens of times more to calculate precise shadows
like in Fig. 11 by the ray tracer, because, from Kajiya’s
experiment(8] and our experiences, it is believed that sev-

eral tens of rays per pixel sampling might be necessary
for a good approximation.

6 Conclusion

In this paper, the theory and applications of pencil trac-
ing have been described. In the theory, we introduced a
system matrix approximation and analyzed the approxi-
mation errors. The system matrix describes general pen-
cil behavior, and it provides the basis for pencil trac-
ing. From approximation error analysis, we derived a
parabolic error estimation function that enables pencil
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tracers to assure a required image accuracy.
The theory solves a variety of ray tracing problems in
the following ways:

e The system matrix provides a better approximation
of refraction and error estimation tools for beam
tracing[2].

e The system matrix provides a general calculation
method to obtain a pencil-spread angle which is
necessary for ray tracing with cones[3].

e The system matrix provides a general method for
tolerance calculation which is esscntial for Barr’s
ray tracing method[4].

o The system matrix provides a general illuminance
formula that describes the light concentration ef-
fect.

e The system matrix provides fast ray tracing and
anti-aliasing methods for smooth refracting and re-
flecting objects. Image accuracy is assured due to
the error estimation function.

As applications, we proposed three fast ray tracing
algorithms, ray tracing with a system matrix, ray inter-
polation, and generalized perspective transformation. An
illuminance formula that describes the intensity law for
general situations is also presented. Using the formula,
pencil tracers can analytically calculate illuminances for
refracted and reflected light emitted by point sources.
Experiments confirmed their efficiency in speed, accu-
racy and reality for smooth transparent objects. The
edge problem still remains in ray tracing with the system
matrix, and further research is required.

As the theory provides general tools for pencil trac-
ing, it is considered that pencil tracing is applicable to
many situations that require tracing many close rays.
These situations include, for example, when creating a
motion-blurred picture, demonstrating the dispersion ef-
fect of transparent objects, making many pictures from
a continuously moving view point, and distributed ray
tracing[10].
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Appendix

Error estimation functions, e, and e

(1) Transfer:
Since the second term of a ray change 41 is zero, the
error estimation function is equal to zero.

(2) Refraction or reflection:

e; = ax?+ bz + ct?

e¢ = da?+ ezt + fE* (A-1)
where
a = (cos@'/2Rcos?8)|o + Btan b,
b = (la/7)(n/n’),
c = 0,
d = (181/cos’ O)[(1/4R®){tan + (2 + |B]) tan ¢}
+\/§d3m])
e = |ytan@ — (1/7)tan6|/(Rcos6)(n/n"),
o= (lad/2)(n/n'),
o = tanf —~ytand,
IB = 1_77
vy = mncosf/n'cost

and R is the maximum curvature of the surface at the
origin, 8 and @' are the incident and refracted axial ray
angles, and da, is the maximum third differential value
at the point, defined by

d3m = max3(|33f/6u,8u]8uk|)

1,5,k=1,
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(3) General system
Consider a system composed of n element systems,
wherein the system matrix is

T=TTh Ty,

where T is the system matrix of an i element system. For
simplicity, let the 4x4 matrices T* and T} be

7o — {T,,Tn__1~~T,~+1 fori=1,2,---,n—1

: 1 fori=n
(Aaa As,->
45 4 )
T — 1 fori=1
P TiaTig---Ty fori=2,3,---,n

b b
— < Ati AZ,‘ )
- I
Az Ay
where A% and A% are 2x2 matrices. The error estimation
functions are given by

e(¢) = Ct{zn:Mit()‘liPi+/\2iQi)Mi}Cy
i=1
and
Q) = CLOMIOGP+ QMG
where
z
¢ = (»s)
M, = (Hu #iz)
His Hig
_ a; b,/2
ho= (bi/z 4 )
_ d,’ 6,'/2
Q < ' )

The values p;; and A;; are square roots of the larger
eigen values of A%(A%)" and A%(AZ)!, respectively. The
value a; to f; is a coefficient of the error estimation func-

tion for the i element system, given by Eq. (A-1).
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