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SUMMARY

Periodic motion is an important class of motion to synthesize, but it is not easy to compute it
robustly and efficiently. In this paper we propose a simple, robust and efficient method to compute
periodic motion from linear equation systems. The method first calculates the response of the
system when an external periodic force is applied during one period, and then sums up the
periodically shifted versions of the system response to provide the periodic solution. It is also
shown that Fourier decomposition is very effective to compress the motion data without a drop
in visual fidelity. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Synthesizing realistic motion is one of the most challenging goals in computer
animation. Many studies have been made towards this goal, and the physically based
approach has been widely recognized to be a promising way to create realistic
motion (Reference 1 is a good introduction). In the physically based approach the
motion synthesis process is formulated as a dynamic simulation process. Such a
process is usually represented by a linear equation system, which can be solved, for
example, by Euler’s method. Physically based simulation is a powerful method, but
solving a system of equations requires a lot of computation time, especially for
complex systems, and it is difficult to achieve real-time visual simulations such as
virtual reality applications.

If the motion is stationary and periodic, we can precompute the motion patterns
and make an animation by repeatedly applying the precomputed pattern in image
generation, as in the case of repeatedly applying periodic texture patterns in rendering.
Some stochastic motion in nature can be modelled using its intrinsic periodicity,
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such as water flow in water streams, waves at the seashore, swaying trees in wind,
and so on. However, most physically based methods are performed in the time
domain, typically by Euler’s method, which does not always provide a stationary
periodic solution owing to errors. Another problem with this mapping approach is
that motion patterns require a huge memory for complex dynamic systems if we
attempt to save all motion data.

This paper describes an efficient and stable algorithm to compute the periodic
responses of linear systems when periodic external forces are applied. First, the
algorithm calculates the response of the system when the force is applied only
during one particular period (e.g. 0 <¢<T). The response p(t) is computed until
the motion converges to zero. Second, the algorithm calculates the summations of
shifted patterns of the computed response, 2p(t — nT), for n =0, 1,2,.... This
summation is, in turn, the periodic solution of the original problem. The validity of
this approach can be easily proved from the superposition feature of linear systems.
Further, we apply Fourier decomposition to the simulation results to compress the
data amount without loss of visual fidelity. The method is applied to a physically
based stochastic motion synthesis of trees. The experimental results are very encour-
aging and confirm that just a small number of Fourier components can reconstruct
visually realistic motion.

2. LINEAR SYSTEMS AND PERIODIC MOTION

2.1. Basics

Most applications of physically based animation are formulated as linear equation
systems. For example, damped spring—mass systems can be modelled by

Xy fi()
X f(0)
(Md2 ety K) B 1
dr dr A ()
\x,, Lfn(t)

where M, C and K are n X n matrices known as the inertia matrix, the damping
matrix and the stiffness matrix, respectively. If the applied force f(r) is a periodic
function with period 7, i.e.

fit + 1) = fit) (2)

then the stationary response of the system is periodic as well.
For simplicity, let us first consider the one-dimensional system described by

d? d
(m @ + c Ef + k)x(t) = f(t) 3)
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Figure 1. Solutions for a single spring—mass system

where m is the mass, ¢ is the damping constant and k is the stiffness constant.
There are three typical methods to solve the problem.

Direct method

The simplest way to get the solution is to apply Euler’s method, which approxi-
mates differentials by displacements over a finite time step A,

(fir) — cv(;)1 — kA, o) 4)

x(t + A,) = v(HA, + x(2) ®)

vt + A) =

At the beginning the solution depends strongly on the initial condition and is not
periodic. In theory, after processing a sufficient number of time steps, the solution
tends to the stationary periodic solution. In practice, however, discretization errors
may cause unstable behaviour, and convergence cannot be guaranteed in critical cases.
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Figure 2. Wind velocity

Fourier method

Another possible approach is to apply the Fourier method, which is also known
as the frequency response method in linear circuit theory. Applying Fourier transfer
to equation (3), we have

A(w)i(w) = flo) (6)
f(w) = A7 flw) (7)

where X denotes the Fourier transform of the function x(¢), w is the angular frequency
and A(w) is the frequency response of the system. For the single damped oscillator
example, the response can be calculated as

A(w) = mw? — ico + k

Thus, applying the inverse Fourier transform

x() = f a-! f)exp(—iwt)dw
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Figure 3. Responses of a trunk, a branch and a leaf

yields the stationary solution. This can be computed by FFT, and the solution is
guaranteed to be stable and periodic.

This method works fine in one-dimensional cases because A~' is a simple scalar
division. In multi-spring cases, however, the response A is a matrix, so calculation
of A™' requires matrix inversion, which is generally hard to compute, especially for
large matrices.

Impulse response method

An equivalent computation can also be performed in the time domain, known as
the impulse response method. The impulse response h(f) is the response of the
system when a unit impulse force 3(r) is applied to the system. For the system
described by equation (3), A(r) satisfies

a2 d
(m wregt k)h(t) = 3(f) (8)
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Figure 4. Power spectra of responses

h0) =0
dh
dr ©0)=0

From the definition of the delta function we can
as a convolution with the delta function:

ﬂﬂ=fm%0—ﬁw

From equations (8) and (11) we have

2

fiyy = Jf(t')(m % +c i + k)h(t — t"dr'

d2 d ! ’ !
= (ME + Ca + k)(ff(t Ya(t — t)dt)

This means that the integral

© 1998 John Wiley & Sons, Ltd.
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represent the external force f(f)

(11)

(12)

(13)
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Figure 5. Number of Fourier components and error

(1) = f = b (14)

is the solution of equation (3). The integral in equation (14) is an infinite integral,

but it is generally true that the impulse response functions of stable systems rapidly

tend to zero with ¢. Therefore, if the response after 1 > 7. can be neglected, i.e.
h(t) =0 forr >t

the integral can be reasonably approximated by a finite integral as

x(1) = J’C St = tHh(")dr' (15)
0

The result is assured to be stable and periodic as in the case of the Fourier method.
It is known that the impulse response A(7) is equal to the inverse Fourier transform
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Figure 6. (a) Reconstructed response (trunk). (b) Reconstructed response (branch). (c) Reconstructed
response (leaf)

of the frequency response H(w), so it can be calculated from H via FFT. Of course,
it is also possible to solve equation (8) directly by Euler’s method.

There is also another problem with large systems. In the case of n degrees of
freedom (DOFs) the impulse response is an n X n matrix and n?> functions have to
be computed, which can be very expensive for high-DOF systems.

2.2. New method for periodic motion

Our idea is to combine the direct method and the impulse response method so
that the stationary solution can be efficiently and robustly obtained for high-DOF
systems. We first consider applying the external force f(r) for only one period, e.g.
0 <1 <T, and then let the system move by itself. We denote this truncated force by

fr(t)z{ﬂt) ifo<r<T

0 otherwise

For the single spring—mass system the response p(f) satisfies
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Figure 6. (b) Continued

(16)

k)p(t) = f(1)

t

+ d+
m —5 C —
dr?

|

a7

p0) =0

dp
dr

(18)

©0)=0

oo

> filt = )

Since f(?) is a periodic function with period 7, f(f) can be represented by an infinite

sum of f;:

19)

—o0

n=

fl) =

Therefore, if we set

(20)

x(t) = 2, p(t—nT)

the summation x(¢) satisfies the original equation:
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Thus we can get the solution x(#) of equation (3) by equation (20), which is the
superposition of shifted versions of the response p(f). Equation (20) involves an
infinite sum, but, like the impulse response h(r), the response p(f) rapidly tends to
zero and the sum is well approximated by a finite summation. The response p(t)
can be easily calculated by a direct method such as Euler’s method. The solution
resulting from the superposition is stable and guaranteed to be periodic.

As is easily proved, this holds for any linear system. The advantage of this
method over the Fourier method and the impulse response method is its efficient
computation for complex systems. Unlike the impulse response method, we only
have to compute n functions for n-DOF systems.

The procedure to compute x(f) is straightforward, as outlined below.

1. Compute p(r) by Euler’s method.

2. Find an integer number m such that |p(r)| <0 for t>mT and for a given
threshold 6.

3. Calculate the sum x(f) = 23 p(t — mT) for 0 <t <T.
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3. EXPERIMENT

3.1. Single mass—spring system
First we applied the method to a single spring-mass system, described by
equation (3), and made comparison with the analytic solution. The applied force is
a unit sinusoidal function
f(t)y = sin(2mt/T) = sin(wt)

In this case we have the analytic solution x,(?):

x,(1) = A sin(wt + ¢) (21)
A = [(k — mw?)? + (wc)?]? (22)
¢ = —tan"[co/(k — mw?)] (23)

en the frequency w is close to the resonance frequency of the system (w, =

k/m), a direct application of Euler’s method to equation (3) with the periodic external
force can result in large unstable errors, even with small time steps. Figure 1 shows
the solutions obtained by Euler’s method and the proposed method. The analytic
solution is also plotted for reference. The parameters used are w = 1-0 (T = 2m),
m=1, w,=1.01 (k=1.01), ¢ =001 w3 and time step A, = 7/10,000. The result
from Euler’s method shows a large difference in the computed responses for the
80th period (807 < ¢t < 817) and for the 160th (1607 < ¢t < 161T) period, demonstrat-
ing the unsuitability of directly applying Euler’s method. Also, they both involve
large errors. The L*-error ratio defined by

TIA,

>, (GA) — XGANY, (x,GA))

J=0 J

was 5-07 for the 80th period and 1-40 for the 160th period. On the other hand, the
result from the proposed method is stable and agrees with the analytic solution to
a large extent. The measured error was only 0-0008.

3.2. Bamboo swaying

Next we applied the method to a more complicated system. Motion under the
influence of wind has attracted many researchers®* and it is known that stationary
turbulence can be represented by a periodic model.” This motivated us to apply our
method to the synthesis of tree-swaying motion.* A sample image is shown in
Plate 1. In this application the external force comes from a stochastic wind field,
which is modelled as a power spectrum. The wind field is obtained by applying
FFT to the spectrum, so the force is periodic with period 7. A sample of the wind
velocity is shown in Figure 2.

By applying a modal analysis technique, the system can be formalized as a
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second-order differential equation system (for details see Reference 4), which was
then solved by the proposed method. This example is a stand of bamboo consisting
of approximately 3000 branches (9000 DOFs). The period T was set to 256 frames
(8:53's). Some sample results for a trunk, a branch and a leaf are shown in Figure 3.

3.3. Fourier decomposition

Our method is efficient in computing physically based periodic motion, but the
computed response function requires a large storage space. For example, when there
are 10,000 DOFs and the period is 1000, 107 data must be stored for just one tree.
If there are 100 trees in a scene, more than 1 GB of memory is required even when
1 byte is allocated to represent a datum. However, if the power spectrum of the
motion has a narrow frequency band, we can efficiently compress the data by Fourier
decomposition. Figure 4 shows the power spectra of the responses presented in
Figure 3. As seen in the figure, most energy is distributed in the low-frequency
domain. Thus the n-best components can be a good approximation of the original
response. Figure 5 shows the L*-error defined by

e = 3x(t) — x|/ |x@))

where x(f) is the Fourier composition of x(¢) from the n-largest frequency components
{w;}i=.» represented by

n

x{1) = 2, () exp(— ;1)

Jj=1

The figure suggests that we can accurately reconstruct the periodic motion from just
a small number of components. Thus, we need to save only a few sets of frequency,
amplitude and phase, instead of the time sequence, which solves the memory problem.

We represented the responses by four Fourier components and made an animation
of the bamboo swaying. The synthesized animation is almost visually identical to
the original one. Even when the two sequences are presented side by side on the
same monitor simultaneously, there is little possibility of recognizing any difference.
Figures 6(a)-6(c) show the motion reconstructed from the four frequency components.
It has been demonstrated that the four components are good enough for the motion
of the trunk and the branch to be reconstructed accurately. The reconstruction for
the leaf produced relatively large errors (6 per cent), since the leaf response has a
broader bandwidth. This means that we need more components (say 16) to increase
reconstruction accuracy. Fortunately, however, because leaf motion is fast and very
small in amplitude, these errors are hard to perceive from the animation.

4. CONCLUSIONS

We have proposed a simple, stable and efficient method to compute periodic motion
from linear equation systems. The method first calculates the response of the system
when the external periodic force is applied during one period. It then sums up the
periodically shifted versions of the response to yield the periodic solution. We have
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also shown that Fourier decomposition is very effective in compressing motion data
without loss of significant fidelity.
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