“Visual
somputer

Laying out objects with
geometric and physical
constraints

Mikio Shinya and Marie-Claire
Forgue

NTT Human Interface Laboratories,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180, Japan
email: shinya@nttarm.ntt.jp

Modeling scenes involves two tasks: ob-
ject modeling and object layout. This paper
focuses on object layout and proposes
a constraint-based approach which yields
a powerful object layout environment.
The approach uses collision detection and
physical simulation to ensure geometric
and physical consistency of the resulting
scenes, such as no interpenetration, and
physical stability of the objects. A proto-
type system is developed, providing six
basic operations; PUT, PUSH/PULL,
TURN/TILT, PICK-UP, TRANSLATE,
and ROTATE. The system: ensures geo-
metric and physical consistency; provides
easy-to-use operations analogous to ob-
ject placement in real life; allows two-
dimensional control easily specified by
mouse. Interactive speed is achieved on
graphics workstations by using rasterized
collision detection and simple quasi-static
motion simulation. The system is inter-
faced to modeling/rendering/animation
systems, and realizes an integrated envi-
ronment for object modeling, object
layout, rendering, and animation. We de-
scribe several scenes that have been
modeled using the system and argue that
these experiments confirm that the scene
modeling task is greatly simplified by our
constraint-based approach.

Key words: Object layout — Geometric and
physical constraints — Collision detection

Correspondence to: M. Shinya

188

1 Introduction

One of the main tasks in computer graphics is to
realistically model complex scenes. Modeling
scenes involves two different subtasks: object
modeling and object layout. In object modeling,
the shapes and other attributes of individual ob-
jects are defined, and in object layout, the defined
objects are placed so as to construct the desired
scenes.

Although many proposals have been made to
facilitate object modeling, very little work has
addressed object layout. Obviously, the functions
desirable for object layout differ significantly from
those needed for object modeling; for instance, in
object layout, geometric and physical consistency
must be maintained (e.g., interpenetration among
objects should be avoided), while in object
modeling, free transformation and deformation is
desired (e.g., penetration should be allowed when
building shapes). Despite these differences, objects
are usually laid out in object modeling environ-
ments by manually adjusting their positions with
careful mouse manipulation, or by numerically
specifying transformations from a keyboard. This
is a time-consuming and error-prone process,
which imposes limitations on the complexity and
realism possible in computer-generated scenes.
For example, computer-generated scenes of labo-
ratories are always clean and well-organized, un-
like most real graphics labs.

In this paper, we propose an object layout system
which yields a powerful environment for modeling
complex scenes. This system applies geometric
and physical constraints to object manipulation.
Its advantages are as follows:

e It ensures consistency in the scene models pro-
duced.

e It supports easy-to-use operations analogous
to real life manipulation, e.g., push/pull, put
pick up, etc.

e It reduces the degrees of freedom on trans-
formations (typically to two dimensions) to
allow easier control by mouse.

A difficulty with this approach is the need for
collision detection, a potentially costly process.
We solve this problem by adopting a fast collision
detection algorithm based on rasterization
(Shinya and Forgue 1991), enabling objects to be
manipulated as interactive speeds on graphics
workstations.

The Visual Computer (1995) 11:188-201
© Springer-Verlag 1995

The’

2 Related work

Geometric and physical consistency have been
mainly investigated in physically based ap-
proaches. Most of these have been aimed at
generating realistic motion in computer anima-
tion, but some of the results and methods are also
applicable to object modeling.

Witkin et al. (1987) and Barzel and Barr (1988)
have developed constraint-based methods for ob-
ject deformation and assembly, as well as anima-
tion. In these methods, users specify their desired
final states using energy constraints or dynamic
constraint forces, and objects are deformed or
transformed according to dynamic equations.
Terzopouloset al. (1987, 1988), and Platt and Barr
(1988) have modeled deformable objects using
physical energy or user-specified energy.

There have been many studies on rigid body dy-
namics. Among them, Moore and Wilhelms
(1988) and Hahn (1988) simulated the impact dy-
namics of rigid bodies using collision detection.
Baraff analyzed the physics of rigid bodies in
resting contact (Baraff 1989), including curved
objects (Baraff 1990) and objects with friction
(Baraff 1991), and then extended the methods to
nonpenetrating flexible bodies (Baraff and Witkin
1992).

3 Interactive object layout

This section characterizes the concept of interac-
tive object layout. The user’s task is to model
complex but consistent scenes by laying out
objects defined during object modeling. The
objective of the layout system is to provide an
interactive, easy-to-use environment where geo-
metric and physical consistency is automatically
ensured. Here, geometric consistency means that
objects do not penetrate each other, and physical
consistency means, for example, that objects
placed at some position remain at rest.

To achieve such an environment, we propose to
restrict object transformations (rotation/transla-
tion) in ways that preserve consistency. For
example, when an object (object 1) is in area-
contact with another object (object 2), as shown in
Fig. 1, translation with a -N component is pro-
hibited and rotation along N is only allowed such

isual —
Computer

that penetration is prevented. In this paper, such
restrictions are called constraints.

To further simplify the manipulation process, we
also propose easy-to-use operations analogous
with real life manipulation, such as push/pull,
turn/tilt, put, pickup, and so on. During these
operations, collisions and interferences are
checked to avoid penetrations and, when collision
is detected, geometric constraints are calculated
to determine the next motion. In some operations,
physical simulation is also applied to ensure that
objects achieve static equilibrium.

There are many similarities between our work
and physically based approaches for computer
animation, but there are also significant differ-
ences. Firstly, only the final state of objects is
important in layout, while the process (move-
ment) itself is important in animation. This feature
considerably simplifies the problem with dynam-
ics, as shown later. Secondly, interactivity is
a critical requirement in layout operations, unlike
in animation. The most time-consuming part of
the operations is collision detection. We use the
fast collision detection algorithm based on raster-
ization described in an earlier paper (Shinya and
Forgue 1991) to achieve interactive execution
speed.

4 Basic operations and data
structures

4.1 Basic operations

Operations can be classified according to how
they use constraints, as shown in Fig. 2. We have
implemented the six basic operations listed in the
figure.

PUT: This operation simulates putting one ob-
ject onto another object. Until it collides with
other objects, the object under operation trans-
lates in the direction of gravity. When collision
is detected, physical simulation is applied to
calculate the object’s motion until it reaches

1 Our notion of constraint is slightly different from the “con-
straints methods” of physically based approaches, where con-
straints are explicitly specified by users as their goals. In layout,
constraints are rather passive, and are automatically obtained
from geometric calculation and physical simulation.

189

“Visual —
Computer
~)
N object 1
Operations
object
1 2
Fig. 1. Constraints
Fig. 2. Basic operations

physical — PUT

Constrained { — PUSH/PULL
geometric —|

'— TURN/TILT

Unconstrained ~——— PICK-UP

— TRANSLATE

— ROTATE

equilibrium. An example is given in Fig. 3a and
the procedure is outlined in Fig. 3b.

PUSH/PULL: This operation translates the ob-
ject so as to trace (slide on) the surface with which
it is in contact. In this operation, the object is first
translated in the tangent direction of the contact-
ing surface, and then interference among objects is
checked (Fig. 4a). If the moving object is still in
contact, the operation is continued. If the object
interferes with other objects, the system decides
whether to continue tracing the surface or give up.
Currently, this decision is made according to the
interference distance in the z-direction (d,). For
example, in the situation shown in Fig. 4b, the
distance d, is too large and the object is pulled
back to the collision point. In the situation shown
in Fig. 4c on the other hand, the object is pushed
up to the surface to continue PUSH/PULL. The
decision is made by comparison with a specified
threshold value. If no contact is detected, the
system decides whether to drop the object. In the
example shown in Fig. 4d, the distance is small
and the object is translated in the — z-direction
until contact is made, while the object is pulled
back in the example shown in Fig. 4e. The proce-
dure for PUSH/PULL is outlined in Fig. 4f.

TURN/TILT: This operation rotates the object
while maintaining user-specified constraints.
Users interactively specify contact points to be
held, and the system computes possible rotations.
In Example 1 of Fig. 5, the area contact e;-e,-
es-e, 1s specified, and thus the direction of the

190

rotation axis is calculated as the normal N. The
center of rotation (a point on the rotation axis)
can be either user-specified or be the default posi-
tion (the center of the contacts). In Example 2, the
line contact, e,, is selected, and the rotation axis
becomes e;. In Example 3, the point contact, p,, is
specified as the constraint. In this case, any axis
passing through point p, is acceptable.

PICK-UP: This operation translates the object in
the direction of the normal vector of the contact
surface. It also deletes the logical connection with
the objects previously in contact.

ROTATE and TRANSLATE: These operations
freely rotate and translate the object just as in
conventional object modeling systems.

4.2 Data structures

The main differences between our system and
conventional object modeling systems, as far as
data structures are concerned, lie in the way con-
tacts are represented. When an object is moved, it
is expected that everything that is in contact
with the object also moves. To support this, the
relationship between contacting objects must be
represented.

Object is the smallest unit that can be operated on.
In the current implementation, only polygonal
objects are available, and curved objects are
polygonized. To make contact analysis easier,

(g

I

i £ object 1

’ object 2 ’

Collision Detection

Contact

Interfering

[push back]]7 push up }

Collision Detection

Physical Simulation

equilibrium?

transformation

No contact 4d

Nisual —
Computer

push down § sz

4e

Fig. 3a, b. The PUT operation

‘L—‘I‘
transformation [

4f

Fig. 4a—f. The PUSH/PULL operations

a winged-edge-type structure (Baumgart 1974)
is adopted, allowing bidirectional access among
objects, faces, edges, and vertices. Object also
has a pointer to Contacts to refer to contact
information.

Load-support list is a list structure representing
contacting objects. Typically, one object (the load
object) is supported by other objects (support
objects). In our system, the object which is
PUSHed, PUT, TURNEed, etc., is assumed to be
the load object. To describe the load-support rela-
tionship, the list contains a field pointing to the
support object and the load object. The convex-
hull of the contact points is also stored in the list,

which can be used in stability checking. The load-
support list for the objects in Fig. 6a is illustrated
in Fig. 6b. All load objects of a support object can
be identified using this list structure. This allows
them to be operated on together.

Contacts represents information on contacts ne-
cessary to calculate constraints. It contains the
convex-hull of contact points and the topo-
logies of contact points, edges, and faces. It also
contains the contact type, i.e., area-contact, line
contact point-contact, etc., to simplify constraint
calculation.

191

— "Visual

Computer
rotation axis
N
Ay
/
ASE e \XV L/
& N
A el\\\\, e
EESSSNNSSS
e4 /
a
5 -
/
I l
b / rotation axis
rotation axis
\V P
f
c
Fig. Sa—c. The TURN/TILT operations

5 Algorithms
5.1 Interference detection

Detecting collisions and intersections is the most
time-consuming function, and thus, the most criti-
cal process. Geometric algorithms like that of
Boyse (1979) work fine for simple objects, but are
too slow for complex objects. To achieve interac-
tive speed for complex objects, we use the z-list
interference detection algorithm (Shinya and
Forgue 1991) The algorithm first rasterizes the

192

projection and calculates the z-values, just like the
z-buffer visible surface algorithm (Fig. 7a). Here,
the projection can be in any desired direction. For
interference detection, z-values and pointers to
the corresponding objects/faces are saved in a z-
list for each pixel (Fig. 7b). Sorting the z-value in
the z-lists allows the detection of overlapping ob-
jects, and thus, interference (Fig.7c). In the
example shown in Fig. 7, interference is detected
at pixels x; and x,. The advantages of this algo-
rithm are:

e Fast execution comparable to the display speed

e Time complexity linear in the number of faces

e Robustness due to limited use of topological
information

e Easy implementation

Hardware z-buffering generally does not provide
full z-list information. To take advantage of
graphics hardware, we implemented the algo-
rithm in three steps (Fig. 8a). First, a bounding
box check is done between the moving object and
other objects. If overlapping bounding boxes are
detected, a simplified z-list interference detection
is applied to the moving object and the objects
that fail the bounding box test. In this second step,
only the maximum and minimum z-values of the
objects are stored at each pixel by hardware z-
buffering. In the example in Fig. 8b, only z;, z3, z4,
and z¢ are saved at the pixel x5, and the possibility
of interference is detected. Note that the simplified
z-list test provides exact results in two important
cases: first, for convex objects, second for a trans-
lating object when projected in the direction of
movement. If the second step detects the possibili-
ty of interference, complete z-lists are made by
software z-buffering. In the example, mtersectlon
is ruled out at the third step.

Selection of the projection direction and projec-
tion volume (clipping planes) is important in prac-
tice. We adopt the bounding box of the moving
object as the projection volume in the second step.
In the third step, we reduce the projection area
according to the pixels for which interference is
detected in the second step. The projection direc-
tion is selected so as to be close to the direction of
movement. For example, the direction of gravity
is selected in the PUT operation, while in the
PUSH/PULL operation, the translation direc-
tion is selected.

object 1 '

CVisual —
Computer

|

- MJ 6b

F obj 1 >’

" D 7b

z11 Z]ﬁzlz‘)
224

X2 21 72222
731 216 obj 2

X3

pra
<<

Projection
7a 7c

sorted z-lists

Load-Support list e
bject 2
Load — =

Load-Suppqri @& Cﬁ

’1 = (z11,1) = (Z12,1) > (213,2) > (214,2)
H2 = (221,1) > (222,1) > (225,2) > (224,2)

H3 > (z31,1) > (232,1)

z-lists (z-value,object-id)

®1=>(zn,1) > (213,2) > (z212,1) > (214,2)
Rz > (z221,1) = (225,2) > (222,1) > (224,2)

®3 = (z31,1) = (z32,1)

Support

objecll’y

Support

Fig. 6a, b. The load-support list

Fig. 7a—c. The z-list

5.2 Collision detection and contact
calculation

The system performs collision detection by look-
ing for interference in each frame. This may miss
slight collisions in the intervals between frames,
but we can ignore this because it rarely affects the
consistency of the final state. When interference is
detected by the z-list procedure, the collision time
is calculated by intersection calculation (Boyse
1979). This calculation is done only for the inter-
fering faces to save time. According to the colli-
sion time, the moving object is translated and/or
rotated to the assumed contact position. Another
z-list interference test is made to ensure that the
objects are in contact. When new interference is
detected, the collision time is recalculated for the
detected interfering faces. When the objects are
in contact, the topology of the contacts (point
. contacts, line contacts, and area contacts) is cal-
culated through a geometric calculation. A dia-
gram of the procedure is shown in Fig. 9.

The fast interference detection algorithm de-
scribed in Sect. 5.1 allows fast execution of colli-
sion detection. Since the contact time calculation
become expensive when a large number of faces
are processed, we apply the process only to the
detected interfering faces. The number of interfer-
ing faces is usually small, and thus the computa-
tion cost is kept reasonable even for complex
scenes, as shown in Sect. 7.

5.3 Physics

Computing exact solutions to rigid-body dynam-
ics is a very difficult task, in fact, it is NP-hard in
the worst case (Baraff 1989). Fortunately, layout
tasks do not necessarily require exact physical
simulation because simpler operations can pro-
duce similar results. Thus, we simplified the prob-
lem in the following ways:

Localization. In most layout tasks, interest is
focused on the object currently being moved.

193

— "Visual
Computer

Bounding-box check

v :

Simplified z-list test

X1
v x

X3

Complete z-list test

8a .

projection plane
8b

Fig. 8a, b. Interference detection

Fig. 9. Collision detection

interference test

Y

Collision time calculation

4
transformation

interference test

l contact

Contact Analysis

interfering

Consequently, we only consider the physical be-
havior of the moving object, and the other objects
are assumed to be fixed. This allows us to bypass
the NP-hardness problem.

Quasi-static motion. In animation, full dy-
namic simulation is desired to generate realistic
motion, such as object bouncing. In layout,
however, we do not need realistic bouncing, and
are more interested in the simulation of smooth
motion. Thus, we assume that the velocity of the
object is zero in each frame, and that the object
moves according to the direction of the cal-
culated linear and angular acceleration. Such
motion is almost static and is called quasi-static
motion.

Perfect friction. Since inclined frictionless sur-
faces cannot realistically support objects, we
must assume that friction forces are present. If
objects slide on surfaces, the problem becomes
ill-conditioned under the quasi-static condition
because the direction of friction force is the
direction of movement, which is always zero
in this case. To avoid this situation, we do
not allow objects to slide; perfect friction is
assumed.

194

With these simplifications, the physical simula-
tion for the PUT operation can be achieved by the
following simple algorithm:

Case 1 — Point contact: When contacting at
a point P (Fig. 10), the object rotates along the
line I, which passes through P and is perpendicu-
lar to both PG and the z-axis, where G is the
center of gravity and the z-axis is the opposite
direction to gravity.

Case 2 — Line contact: When contacting at two
points P, and P,, or on an edge P, P,, there are
two cases depending on the relative position of the
center of gravity. If the foot of the perpendicular
of G to P, P, lies between P; and P,, the object
rotates along P, P, (Fig. 11a). Otherwise, one of
the vertices closer to G becomes the only contact
point, and the object follows the rule for point
contact. In the example of Fig. 11b, P, becomes
the contact point.

Case 3 — Area contact: When contacting more
than three points which are not on the same line,
the convex-hull of the contact points is calculated.
If the projection of G in the — z-direction is inside
the convex-hull, the object is stable (Fig. 12a).

rotation axis

Fig. 10. Point contact

Otherwise, if the closest point to G on the con-
vex-hull is one of the object’s vertices, it becomes
the only contact point and the rule for point
contact is followed (Fig. 12b). If the closest point
is on one of the edges, this edge becomes the
rotation axis (Fig. 12c).

6 Implementation

We implemented the object layout system on an
IRIS 4D-series workstation. The main features of
the implementation are described in this section.

6.1 System configuration

The system consists of four main parts: Win-
dow/Command Manager, Data Manager, Op-
eration Manager, and I/O Manager, as shown in
Fig. 13. The flow of control is simply determined
by events: the Window/Command Manager de-
tects an event and calls other Managers according
to the current command. After the completion of
the command, control goes back to the Window/
Command Manager who handles the next event.

Window/Command Manager: This module deals
with window display, menu management, and
other events like mouse action?, keyboard input,
etc. It also analyzes commands and calls other
Managers to perform appropriate commands.

2 Interaction with buttons, sliders, etc., is managed using forms,
software developed by Mark H. Overmars.

“Visual —
Computer

Data Manager: This module maintains object
data and the load-support lists. Its main tasks are:

e To update object data based on results of op-
erations, including the locations of objects,
load-support lists, contacts, etc.

e To delete object data when so ordered

e To append object data when new objects are
read from files

Operation Manager: This module executes basic
operations like PUT, PUSH/PULL, etc. This in-
cludes collision/interference detection, quasi-
static motion simulation, and contact analyses.
The resulting contacts are returned to the Data
Manager for updating.

I/0 Manager: This module manages file I/O, in-
cluding data conversion from/to object modelers
and renderers. Its main tasks are:

e File management

e Data conversion from/to other systems, (cur-
rently, the Alias Modeler and Renderer, and
some in-house software)

e Polygonization of NURBS surfaces

6.2 Window configuration

The system display includes four windows, as
shown in Fig. 14. The upper right window is
called the perspective window; this is where the
user can interactively change the perspective view.
The lower right window is called the constraint
window; the viewing direction is automatically se-
lected according to the active constraints. In the
example shown in the figure, the currently moving
object (a bottle) is constrained by the table, and
thus, the normal direction of the table (the z-
direction) is chosen as the viewing direction. The
information provided in this window helps users
control the constrained operations. The lower left
window is called the three-view window; this is
where user specifies one of the three available
views (TOP, SIDE, FRONT). The top-left
window is called the miscellaneous window; it
displays the control panels for file I/O, motion
control, etc.

Figure 15 contains another example of the display
of a moving object — a banana. The bounding

195

— “Visual -
Computer

rotation axis
11a

P2 rotation axis

N

11b

Z,

SIS

12a
,, //' ---------------------
e /é
v
12c / rotation axis

rotation axis
Convex-hull 12b

Fig. 11a, b. Line contact

Fig. 12a—c. Area contact

box (i.e., the projection volume for the z-list inter-
ference detection) and the gravity line (the straight
line starting at the center of gravity in the — z-
direction) are drawn in the perspective window
(Fig. 15a). To facilitate constrained operations,
the convex-hull of the contact (red line) is drawn
in the constraint window (Fig. 15b).

196

6.3 Examples of basic operations

Figure 16 shows a sampled sequence during the
PUT operation. In Fig. 16a, the object (a spoon)
starts moving in the — z-direction, and in
Fig. 16b, it collides with the teacup. In Fig. 16c,
the object rotates according to the quasi-static

£

Visual —
Computer

Window/Command |
Manager T

S

i

Modeler/ <> .
Renderer (file) <>

/O Manager |<>

Data Manager

Operation Manager |<€—

A
Y

Fig. 13. System configuration

analysis, and after several collisions, finally settles
into a stable position in Fig. 16d. Note that no
user intervention is required during the operation.

Figure 17 involves an example of the
PUSH/PULL operation. The user specifies the
direction to PUSH in the constraint window with
the mouse, and the object (a spoon) moves in that
direction, while remaining in contact with the
curved surface (a saucer). Note that the direction

Fig. 14. Four windows

is specified in two dimensions, while the move-
ment is in three dimensions.

Figure 18 contains an example of the
TURN/TILT operation. In the constraint win-
dow, the user has specified a contact edge as
constraint, as shown in Fig. 18a. The viewpoint of
the window is automatically switched to the direc-
tion of the specified edge (Fig. 18b), and the user
specifies the amount of rotation along the edge

197

The’

“Visual
Computer

16¢ h 16d

(Fig. 18c); again, this requires only two-dimen-
sional values.

7 Results and discussion

Several scenes were constructed on the system,
and the execution time for various operations was
measured on an IRIS 4D/310 VGX. Since re-
sponse time is the most critical factor in interac-
tive systems, we first measured the execution time
of the basic operations. In a simple scene,

198

Fig. 15a, b. An example of
object display

Fig. 16a—d. An example of the
PUT operation

SPOON-SAUCER (Fig. 19), a comfortable op-
eration speed was achieved.

As shown in Table 1, the PUT operation takes
0.41 s/movement, and the PUSH/PULL opera-
tion takes 1.1 s/movement. To check the influence
of scene complexity, we also constructed a com-
plex scene BREAKFAST? (Fig. 20). As shown in
Table 1, acceptable speed is achieved even in this

3 The scene actually consumed all of the available 32MB main
memory.

g /e

17b

18¢c

situation. Considering that the display speed of
this scene is 0.4 s/frame, the additional computa-
tion cost for the constrained operations is reason-
able.

Two scenes were modeled on the system for evalu-
ation. The scene OFFICEI1 (Fig. 21) consists of 16
objects, and it took only 20 min to complete the
layout. The scene OFFICE2 (Fig. 22) is a modi-
fied version of OFFICEI, with 9 additional ob-
jects. This modification also took 20 min.
Throughout both layout jobs, we used only the six
basic operations described in Sect. 4. The opera-

isual —

Computer

20

Fig. 17a, b. An example of the
PUSH/PULL operation

Fig. 18a—c. An example of TURN/TILT
Fig. 19. SPOON-SAUCER

Fig. 20. BREAKFAST

tions are easy to use and considerably simplify the
layout task. In particular, PUT and
PUSH/PULL are very powerful tools for laying
out curved (tessellated) objects (e.g., the fruits in
BREAKFAST) and to model disorganized scenes
like OFFICE2.

The system was interfaced to the Alias
Modeler/Renderer, which was used to render the
BREAKFAST scene. The rendered image is
shown in Fig. 23. The total number of triangles is
about 57K, and the rendering time was 1h
10 min on an IRIS Indigo R3000.

199

— "Visual

Jomputer

Fig. 21. OFFICE1

Fig. 22. OFFICE2

Table 1. Execution speed of basic

operations Scene

Complexity PUT PUSH/PULL

SPOON-SAUCER

BREAKFAST

2 objects
(0.9K polygons)

0.41 s/movement 1.1 s/movement

24 objects
(15K polygons)

2.0 s/movement 4.0 s/movement

Fig. 23. Rendered image of BREAKFAST. The image was rendered
by Alias Ray Tracer, and shading/lighting was designed by Shoukou
Nomura, Sumisho Electric, Ltd.

200

8 Conclusion

We have proposed an object layout system which
uses geometric and physical constraints to facilit-
ate the construction of complex scene models. The
advantages of the system are:

e Geometric and physical consistency is ensured.

e Easy-to-use operations analogous with object
placement in real life are provided, (e.g. put,
push/pull, turn/tilt, etc.)

e Manipulation can be performed in two dimen-
sions by taking advantage of constraints.

Interactive operation speeds are achieved by us-
ing rasterized collision detection and simple
quasi-static motion simulation.

The

We have implemented the system on a Silicon
Graphics IRIS 4D series workstation. This system
is interfaced to an Alias Modeler and Renderer,
and realizes an integrated environment for object
modeling, object layout, rendering, and anima-
tion. Several scenes were laid out using the system.
These experiments confirmed that the constraint-
based operations are very powerful tools for ob-
ject layout.

In future work, we would like to address the
following issues:

e Flexible objects, like cables, cloth and paper,
are very common in indoor scenes, and exten-
sion of the system to flexible models would
allow scenes that include such objects to be
achieved by applying deformable models (1986).

e Further physics such as a global stability check
would enhance the physical consistency of
scene models.

e Computer-aided layout design for offices,
shops, labs, etc., would be an attractive applica-
tion of this technology.

Acknowledgements. We would like to thank Yves Lespérance
who provided comments and corrections on this paper. We also
thank Atsushi Kajiyama and Hiroki Kobayashi for their tech-
nical help, Yoshitaka Nomura for his advice on Alias software,
and Hohiji Watanabe and Toshimitsu Tanaka for helpful dis-
cussion. Finally, thanks go to Rikuo Takano and Masashi
Okudaira for providing a supportive research environment.

References

Barzel R, Barr AH (1988) A modeling system based on con-
straints. Comput Graph 22:179-188

Baraff D (1989) Analytical methods for dynamic simula-
tion of non-penetrating rigid bodies. Comput Graph
23:223-232

Baraff D (1990) Curved surfaces and coherence for non-penetrat-
ing rigid body simulation. Comput Graph 24:19-28

Baraff D (1991) Coping with friction for non-penetrating rigid
body simulation. Comput Graph 25:31-40

Baraff D, Witkin A (1992) Dynamic simulation of non-penetrat-
ing flexible bodies. Comput Graph 26:303-308

Baumgart BG (1974) Geometric modeling for computer vision,
Technical report AIM 247, Standard Artificial Intelligence
Laboratory

Boyse JW (1979) Interference detection among solids and surfa-
ces. Commun ACM 22:3-9

isual —
Computer

Hahn JK (1988) Realistic animation of rigid bodies. Comput
Graph 22:299-308

Moore M, Wilhelms J (1988) Collision detection and response
for computer animation. Comput Graph 22:289-298

Platt JC, Barr AH (1988) Constraint methods for flexible models.
Comput Graph 22:279-288

Shinya M, Forgue M-C (1991) Interference detection
through rasterization. Comput Animation Visualization
2:132-134

Terzopoulos D, Platt JC, Barr A, Fleischer K (1987) Elastically
deformable models. Comput Graph 21:205-214

Terzopoulos D, Fleischer K (1988) Modeling inelastic deforma-
tion: viscoelasticity, plasticity, fracture. Comput Graph 22
(4):269-278

Weil J (1986) The synthesis of cloth objects. Comput Graph
20:49-54

Witkin A, Fleischer K, Barr A (1987) Energy constraints on
parameterized models. Comput Graph 21:225-232

MIKIO SHINYA is currently
a Senior Scientist at NTT Hu-
man Interface Labs, Japan. He
received a BSc in 1979, an MS in
1981, and a PhD in 1990 from
Waseda University. He was
a visiting scientist at the Univer-
sity of Toronto in 1989. His
research interests include com-
puter graphics, computer vision,
and visual science.

MARIE CLAIRE FORGUE is
a native of southern France,
born in 1959 in Avignon. She
holds a Ph.D. in Computer
Science — on ray-tracing paral-
lelization — from the University
of Nice and INRIA (1988). After
a year as a Postdoctoral Fellow
at the Dynamic Graphics Lab at
the University of Toronto
(Canada), she worked in NTT’s
Graphics Lab (Japan) for
2 years. Her research interests
were focused on illumination al-
gorithm parallelization and
scene modeling. She spent an-
other year in Canada (1992) where she studied film-making at the
Vancouver Film School. Since then, she has directed several
short films and documentaries. Back in France, she is now
interested in interactive multimedia.

201

