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Abstract

This paper considers the deformation of a given surface to a surface that smoothly connects to
previously designed surfaces while reflecting the overall shape of the initial surface. We introduce
deformation energy using a Laplacian-based functional, which is defined by the global differential
geometric structures of the initial surface. It is shown that the proposed deformation energy does
not depend on representations of the initial surface, and relates to the mean curvature vector, a
geometric quantity correlated to overall surface shape, and also has a good computational property.
An example is presented to demonstrate the effectiveness of our method.

Keywords: Surface deformation; Smooth connection; Deformation energy; Laplacian; Differential geometric
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1. Introduction

Modeling complex surface shapes (e.g., human bodies) can be simplified by assem-
bling several previously designed surfaces (e.g., head, arm, leg, etc.) with appropriate
deformation. For functional or aesthetic reasons, surface modeling often requires smooth
connections of adjoining surfaces. This paper considers deformation of a given surface M
such that the deformed surface M’ smoothly connects to designed surfaces My,..., M
positioned in three dimensional Euclidean space R>.

Since the imposed design condition is only a boundary condition, in general, the
possible solutions have an infinite degree of freedom. However, practical methods usually
present a deformation family F of M with a finite degree of freedom if representations of
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M and M,,..., M, are given (see, for example, (Peters, 1990)). For instance, in tensor
product spline representations such as Bézier or B-spline, control points, except those
around the boundary, are used as the degree of freedom to manipulate such deformation
of M.

Interactive manipulation for such deformation of M becomes difficult with an increase
in the remaining degree of freedom that is not constrained by the imposed design
condition, (for example, with an increase in complexity of M in tensor product spline
representation) . Hence, it is desired to automatically control this extra degree of freedom
for such deformation. In this paper, we discuss a method of choosing one deformation
map in the family F of admissible deformation maps of M such that the shape of the
deformed surface M’ is as close to the shape of the initial surface M as possible under
a reasonable measure.

Such a problem is usually formulated by deformation energy and solved as a mini-
mization problem. In our problem, the following claims are addressed for deformation
energy:

o Geometric property. Deformation energy should be defined by the geometric structures
of M and should not depend on the representation of M. Moreover, it should relate
to one geometric quantity reflecting overall surface shape.

o Computational property: There should uniquely exist a deformation map of M that
minimizes deformation energy in the deformation family F, and the minimizing
deformation map should be explicitly calculated.

For the deformation energy satisfying both these geometric and computational prop-
erties, we propose a Laplacian-based energy functional. The proposed energy functional
is defined by the global differential geometric structures of the initial surface M. It is
shown that the proposed deformation energy relates to the mean curvature vector, a ge-
ometric quantity correlated to overall surface shape, and also satisfies our computational
property.

Section 2 briefly summarizes related works. In Section 3, the energy functional is
proposed and its geometric meaning is discussed. Section 4 describes its computation
nature, that is, its energy minimization. In Section 5, when the initial surface M is
a uniform bicubic B-spline surface, a computation to obtain optimal deformation is
provided and an experimental result is presented.

2. Related work

Variational methods have recently become popular in surface modeling. There are
two types of applications: surface creation and surface deformation. In surface creation,
users only specify constraints such as boundary conditions and the methods determine
the optimal surfaces that satisfy the constraints. In surface deformation, on the other
hand, users specify an initial surface as well as boundary conditions, and the methods
try to find a surface that reflects the overall shape of the initial surface while fulfilling
given constraints.

In surface creation, much attention has been paid to the selection of an appropriate
fairness functional. Based on a physical analogy or geometric property, several fairness




M. Kimura et al. / Computer Aided Geometric Design 13 (1996) 243-256 245

functionals have been proposed. The functional of Moreton and Séquin minimizes the
variation of curvature and produces high quality surfaces with predictable behavior (see
(Moreton and Séquin, 1992)). This works fine, but its computational cost is quite high.
To reduce the computational cost, Greiner proposed a Laplacian-based functional (see
(Greiner, 1994)), which is similar to our deformation energy (see (Ximura and Saito,
1991)). He also showed that in the context of boundary value problems, his fairness
functional supplies a kind of approximation of an equilibrium surface under the enegy
of a thin plate, and is also based on geometric consideration.

Our attention is devoted to surface deformation. Namely, we consider energy func-
tionals to generate deformed surfaces that reflect the overall shapes of initial surfaces.
The following energy functionals have been proposed:

e The L?-norm of the displacement amount of the surface (see (Lott and Pullin, 1988)).
e The sum of weighted L?-norms of the differences of first fundamental forms and

second fundamental forms (see (Terzopoulos et al., 1987)).

Although the former deformation energy does not depend on surface representation
and satisfies our computational property, it does not relate to a geometric quantity
reflecting surface shape. On the other hand, although the latter deformation energy has
a strong geometric interpretation’ and also has a physical interpretation?, it yields a
difficult nonlinear optimization problem. In practice, this energy functional should be
approximated from the physical point of view (see, for example, (Terzopoulos et al.,
1987)) or simply replaced by an energy functional analogous to a thin-plate-under-
tension model (see (Welch and Witkin, 1992)). In these cases, however, the energy
fuctionals depend on surface representation, and thus, they are not associated with the
geometric structures of the initial surface.

3. Deformation energy

This and the following sections are described in terms of the manifold theory (see,
for example, (Matsushima, 1972; Hirsh, 1982)), and we will use the same notations
throughout this paper. Since the surfaces to be considered are smooth and have piecewise
C°°-parametric representations, we assume that they are C°°-submanifolds of the C*°-
manifold R? in the theory to be developed. In other words, for simplicity, the theory is
developed in the C*°-category although it is sufficient in the C2-category.

3.1. Laplacian

First, a definition of the Laplacian is briefly reviewed (see, for example, (Chavel,

1984)). It is a natural generalization of the usual Laplacian d2/3 (u')” + 32/3(u?)” on
Euclidean space.

! Surfaces that have the same first and second fundamental forms have the same shape.
2 Deformation of a surface simulates deformation of an elastic membrane.
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Let M be a compact submanifold of R® and ¢ the inclusion map of M to R*. The
canonical metric (, ) on R induces a Riemannian metric on M. The Laplacian A of
the Riemannian manifold (M, (, )) is the following elliptic differential operator on M:

Af =divgrad f,
where f is a C°°-function on M. grad f is a vector field on M defined by

((grad f),,v) =vf

for all v € T,M (the tangent space of M at p € M), where vf is the derivative of f at p
in the v-direction. Note that the largest increase in f occurs in the grad f-direction and
the degree of growth of f in this direction is the magnitude of grad f. For a C*°-vector
field X, div X is the following function on M:

Ly dA = (div X) dA,

where dA is the area element of the Riemannian manifold (M, (,)) and LxdA is
the Lie derivative of dA with respect to X. Note that div X measures the infinitesimal
distortion of area by the flow {£,} on M generated by X, that is, for any closed subset

Kof M,
/ dA=/dideA.
=0

&(K) K

4
dt

For any point p in M, there exists a neighborhood U of p in M, an open set W in
R? and a non-singular one-to-one C°-map x from W onto U C R>. Accordingly, A f
is locally expressed on U as follows:

3%(fox) dg* 1, dlogg\ d(fox)
A = Ap” LS 2 ges )b
(Af)ox Z o um + Z dut —|—2g At Au
1<€AuL2 1€ApL2

(3.1)

where (u',u?) is the canonical coordinate system of R?, {g,\#} are the components of
the Riemannian metric tensor (the first fundamental form) (, ) on M with respect to the
chart (U, x), that is, ga, = (dx/du?, dx/du*), {g**} are the components of the inverse
matrix of the matrix (ga.), and g is the determinant of the matrix (g,,).

Moreover, the Laplacian satisfies the following property (see, for example, (Mat-
sushima, 1972)).

Theorem 3.1 (The maximum principle). Suppose f is a C*-function on M such that
Af =0 on M. Then, if f is not a constant, f does not achieve its maximum and
minimum in the interior of M.

We remark that the Laplacian A is a differential geomeric structure of the submanifold
M of R?* and does not depend on the representation of M.
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3.2. Proposal of energy functional

The usual norm | - | on R* defines a pointwise norm on M. The vector space
C®(M;TR?) consisting of all R*-valued C*®-vector fields on M has the following
inner product and associated norm:

(X.Y) =/(X,Y>dA, X2 = (X. X) =/\X12dA,
M

M

for X,Y € C>®(M;TR?).

We consider the submanifold M as the surface to be deformed. Let ¢ be a deformation
map of the submanifold M, that is, a C*-map from M to R*. Our proposed deformation
energy £(¢) for the deformation map ¢ is defined as follows:

E(P) = lag — A

Hence, the proposed deformation energy is defined by the global differential geometric
structures of M and does not depend on the representation of M.

3.3. Geometric meaning

Let H be the mean curvature vector of M (see, for example, (Palais and Terng, 1988;
Gallot et al., 1990)). Note that H is a normal vector field on M, and the deformation of
M generated from H yields the largest decrease in area (see Appendix). For example,
if M is a sphere of radius r centered at the origin in R?, H, = —2p for any p € M.
Let v be the inward unit normal vector field on M, that is, » = H/|H| at each point
such that H + 0. The pointwise magnitude |H| of the vector field H is twice the mean
curvature (1/2)(H,v) of M with respect to v. At each point of M, the mean curvature
of M measures, on average, how M curves to the »-direction. It is concluded that the
mean curvature vector of a surface is one of the geometric quantities correlated to the
overall shape.

We assume that M’ = ¢(M) is a submanifold of R?. Note that the metric (, )
also defines a Riemannian metric on M’. Let H' be the mean curvature vector of the
Riemannian manifold (M’, {, )) and A’ the Laplacian of the Riemannian manifold (M,
¢*(,)), where ¢*(, ) is the Riemannian metric on M induced from the canonical
metric (, ) on R® by the map ¢.

Theorem 3.2. Suppose the deformation map ¢ of M is an isometric embedding, that
is, ¢ is a one-to-one C*-map such that ¢*{, ) ={, ) on M. Then,

E(p) = ||(H o) — H|.

Proof. It is known that H = Ac and H o ¢ = A’¢p (see, for example, (Palais and Terng,
1988; Gallot et al., 1990)). For a chart (U, x) of M, the components of the Riemannian
metric tensor ¢*(, ) on M are denoted by {g’,,}. For a C*-function f on M, the
Laplacian A’ f is locally expressed on U as follows (see Eq. (3.1)):
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2 1AL ’
’ _ l/\;l-a (fox) ag _1_ /Mtal()gg (9(fox)
(A f)ox= ;g Qurdut + ; dur + 28 du? dur

where (g'**) = (g’,\#)_l and g’ =det(g’,,). Since ¢*(, ) = (, ), &), = gru- Hence,
A’¢p = A¢. This result proves the theorem. [

If only those deformation maps of M that do not involve stretching and shrinking are
considered, the proposed deformation energy measures the total difference between the
mean curvature vectors of M and a deformed surface (see Theorem 3.2). The proposed
deformation energy approximately measures the global geometric quantity as above for
small stretching and shrinking deformation maps (see the proof of Theorem 3.2). Our
energy functional is precisely defined by the global geometric structures of M. Thus,
the deformation energy relates to one geometric quantity correlated to overall surface
shape.

Hence, the proposed deformation energy satisfies our geometric property.

4. Energy minimization

Energy minimization of the proposed deformation energy is discussed within a family
J having a finite degree of freedom, where F consists of deformation maps of M to
surfaces that smoothly connect to designed surfaces M, ..., M positioned in R,

Suppose a special solution ¢ € F is given. Then, F = ¢ + Fo, where Fy is a finite
dimensional subspace of the vector space {¢ € C®(M,R*) | ¢ = 0 on IM}, where
C>(M,R?) is the vector space consisting of C°°-maps from M to R>. Let {¢1,...,¥n}
be a basis of the vector space Fy. We get the following theorem:

Theorem 4.1. In the deformation family F, the energy functional £ has a unique
minimum ¢, which is explicitly expressed as follows:

N
G=cho+> i, (4.1)

s=1
where
¢! —(A(po — 1), Adn)

D = (A, Ag)) ! : : (4.2)
N —(A(go — ), AYw)

Proof. By F > ¢ + Z?’z] Y, < (y',...,yV) € RV, F is identified with RY. From
this correspondence, € can be regarded as a function on RY, For | < r,s < N,

&
ay*

N
) =2 (A, AY) Y +2(A o — 1), AY), (4.3)

r=1
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Fig. 1. The configuration of deformed B-spline surface M’ of M and the B-spline surfaces My, M.

e | N
-(y', .. YY) =2(Ay,, Ayy). (4.4)
ady"dy’
Assume Y°F d'Ag, = 0 on M for d',...,d¥ € R. From the definition of Fo,
Zi\;, d*s = 0 on M. By virtue of the maximum principle (see Theorem 3.1), these
yield Y- d%, = 0 on M. Hence d' = --- = d" = 0. This shows that A, ..., Ay

are linearly independent in the vector space C>° (M, R?). Thus the matrix ((A¢,, Ary))
is a positive definite symmetric matrix. Hence, from Eq. (4.3), the following system
of equations has a unique solution (c',...,c"V) given by Eq. (4.2): & /3y* = 0 for
1 < s < N. By Eq. (4.4), it turns out that the Hessian of £ is always positive definite
on RY. These results prove our theorem. [J

This theorem shows that the proposed deformation energy satisfies our computational
property.

5. Application to B-spline surfaces

B-spline representation is widely used in surface modeling because of its good features
in local shape control and smooth surface composition (see, for example, (Farin, 1990;
Foley et al., 1990; Hoschek and Lasser, 1993)). In this section, the energy minimization
procedure is explicitly given for an initial surface M and adjacent surfaces M;, M, all
represented as non-singular cylinder-like uniform bicubic B-spline surfaces (see Fig. 1).
We assume that the B-spline surfaces M, M| and M, are respectively defined by the
control meshes {P;;; 0<i<m+3, 0<j<n+3}, {Pi;.”; 0<i<m+3,0<j<
m + 3} and {P{; 0<i<m+3, 0<j < n+3} such that
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Pimprj=Pj, (0 j<n+3),
P =P (0<j<m+3),
P =PF (0<j<m+3),

fori=0,1,2, where 3<m,ne€Z,0< n,m € Z.
Note that M = x([0,m+ 1] x [0,n + 1]), where

m+3 n+3

x(u'u?) =N " PNia(u Y Nja (i), (5.1)

=0 j=0

and N4 is a B-spline function of order 4 with respect to the knot sequence Z such
that supp Ny4 = [k — 3,k + 1] (see, for example, (Farin, 1990; Foley et al., 1990;
Hoschek and Lasser, 1993)). Note also that the map x: [0,m+ 1) x [0,n+ 1) — R3
is one-to-one and C?, and the Jacobian matrix has full rank.

The configuration of the surfaces M, M, and deformed surface M’ of M is illustrated
in Fig. 1, where M’ and M,, M, smoothly connect along their boundary curves. In
this case, the deformation family F of M to be considered is constructed from the
deformation maps controlled by the B-spline control points of M.

5.1. Deformation family

We construct the family F = ¢ + Fo of the admissible deformation maps controlled
by the B-spline control points of M. The control points of M corresponding to the mesh

Qo={(i,)) €EZ*|0<i<m+3, (0<j<20rn+1<j<n+3)}

are used to achieve a smooth connection of M’ to M|, M, and the control points of M
corresponding to the mesh

N={(.j)ez*|0<i<m 3<j<n}

are free parameters to control the admissible deformation maps of M.

When combining two cylinder-like spline surfaces, correspondence of control points
between the surfaces must be specified. We assume that such correspondence is given
for the surface M and the surfaces M,, M., and conforming with this correspondence,
the deformation family F is constructed as follows: An element ¢ of F generates a
cylinder-like uniform bicubic B-spline surface M’ = ¢(M) defined by the control mesh
{P',’j; 0 < i < m+ 3, 0 < _] < n+3} such that Pl,'+m+|j = P/,'j, (0 < i < 2,
0<j<n+3),

o P (0<i<m+3,0<)<2) (5.2)
VU PP,l, (0<i<m+3n+1<j<n+d), '

(see Fig. 2).

A special solution ¢ and a basis of the vector space Fo are explicitly expressed as
functions on M to exploit the result of the previous section. We define a C 2_function
fip (0<is<m, 0</j<n+3)onM as follows:
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My M’ M
(m +3) X (n1 +3) - mesh (m+3)X (n+3) - ruesh (m + 3) X (np +3) - mesh
\ﬁ J J/—> j J/%J’
i i . i \

(PO} (P} {P(Z)ij}

# @
3% (n +3)-mesh (4 3)x 3 - mesh (m+3)x3-mesh > (2 +3) - mesh

3x (n+3)-mesh

Fig. 2. The B-spline control meshes of M, M’ and M,: The meshes of the same pattern show the same array
of the B-spline control points.

I

2)

5.3
). (5.3)

(Nia(u'y + Nigmpra(u"))Nja(u®) (O
3<i

i'( ( Iv 2 =
S et 1)) {Ni.4<u‘>Nj,4(u2> (

NN

<
<

for (u',u?) € [0,m+1] x [0,n+1] (see Eq. (5.1), Fig. 3). These are the lifts of the
B-spline basis functions to M, and the inclusion map ¢ of M to R? can be written as

b= Y Pyfy (5.4)
0i<m, 0 j<n+3

Note that the support of f;; is small. This makes the matrix ((A,,Ay,)) in Eq. (4.2)
very sparse, and the computational quantities of (Ay,,A,)’s and (A(o — ¢),Aehy)’s
in Eq. (4.2) decrease (see Eqgs. (5.9)-(5.11)).

Let {Qij; 0<i<m+3, 0<j< n+ 3} be the control mesh of the cylinder-like
uniform bicubic B-spline surface ¢o (M ). The special solution ¢y and the vector space
Fo are then given as follows:

Po = Z Oiifij» (5.5)

0LiEm, 0<j<n+3

Fo = {qs € C*(M,R%) \ b= > Vify Vi€ R3}.
(ihHen
For (i,j) € and a=1,2,3, ¢% € C*(M,R?) is defined by
¢}j=(fij’0’0)’ 1'2j=(0’fij’0)7 13j=(030’flj) (56)
Let {1,...,¥3(m+1)(n—2)} be the sequence generated by {&f;} i j)en1<ags, that is,

bijay = i (5.7)
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m+1 Niia®Nj4 or (Nid+Ni+m+1,4) ® Nj.4

Fig. 3. The lift f;; of the B-spline basis function to M.

where s(i, j,a) = (a—D)y(m+1)(n—2)+i(n—2) +j—2. Then, {(//], ce ,l,[f3(m+|)(,,_2)}
is a basis of Fy.

5.2. Calculation of optimal deformation

From Theorem 4.1 and Egs. (5.5)-(5.7), the energy minimizing deformation map ¢
is obtained as follows:

b= D Qify+ > (Qy+Vy)fi (5.8)
(i.j)Ed (i.j)en
where
‘/;_] - (C.\‘(i,j,l)’C.\‘(i‘j,Z)’CS(i,j,:;))’ (l,j) c 0’

and (c',..., D=2y s derived from Eq. (4.2). Note that the B-spline surface
¢(M) is defined by the control mesh {P;;; 0 < i< m+3, 0<j < n+3} such that
Pimyj=P;, (0<ig<2,0<j<n+3),

ﬁ“: Qij’ (l9.]) E'QO
Y Qi +Vy, (i,)) €
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To obtain the deformation map ¢ of M, the square matrix ((Ay,,Ay,)) of degree
3(m+1)(n—2) and (A(¢o — ¢),Af;)’s have to be calculated (see Theorem 4.1).

First, calculation of the matrix ((Aw,,mps)) is described. From Eq. (5.6) and Eq.
(5.7), it is easily seen that

B 0 0
((Agy,A¥s))= |10 B 0],
0 0 B

where 0 is the zero square matrix of degree (m+1)(n—2) and B = (b,,) is the square
matrix of degree (m+ 1)(n — 2) such that

Dy(ij1ysth 01 =/AfijAfkldA (5.9)
M

for (i,)), (k,1) € £.

Next, calculation of the vector ((A(¢o—t),Ady)) is described. (A(¢0—L),A¢,-”j) has
to be calculated for (i, /) € 2 and 1 < a <3 (see Eq. (5.7)). From Egs. (5.4)-(5.6),
the following is obtained:

Ah-0.86) = Y Ry [asasuda, (5.10)

0<k<m, 0<I<n+3 M

where Rk/ = Qk[ - Pk[ and Rk[ = (R,I([, R%l’ RZ,)

Hence, it is required that the integral fMAf,-jAfk, dA be computed for (i,j) € 0,
0<k<<mO0<LI<n+3 (see Egs. (5.9), (5.10)). The integral is zero for 3 <
li —k| <m—2or3 < |j—I| since the supports of f;; and fi do not intersect, and for
other ¢, j, k, 1, it can be computed by

m+-1 n+1
/du' /duz(Af,-jox)(ul,uz) (Afyox)(u',u®)y Vg(u",u?), (5.11)
0 0

where g, = (dx/du?, dx/du*) can be calculated from Eq. (5.1), g = det(ga,), (g**) =
(gm)_', and then A f;; o x can be calculated from Eq. (3.1). Note that the integration
domain becomes small since supp f;; and supp fi; are small. Note also that the numerical
values of the integrand can be efficiently computed by using matrix operations since a
uniform bicubic B-spline surface is locally represented by a bicubic polynomial.

Hence, it is feasible to compute the optimal deformation map ¢ of M for the cylinder-
like uniform bicubic B-spline surfaces M, M, and M (see Eq. (5.8)). Application to
other B-spline surfaces of different topologies is possible in a similar way.

5.3. Example

An example using our method is presented in the case of the cylider-like uniform
bicubic B-spline surfaces described above.
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Fig. 4(a) shows the designed surfaces M, M, (the green surfaces) positioned in
R? and the initial surface M (the white surface) to be deformed and set between M,
and M,, where m = 3, n =5, ny = 3 and n, = 4. In Fig. 4(b), a special solution
do(M) is shown by the white surface (see Eq. (5.5)), where each control point Qij,
0<i<m+3,0<j< n+3) is obtained by Eq. (5.2) for (i,j) with j =0, 1,
2, n+1,n+2, n+ 3, and is the same as the contol point of M for other (i, ;). Fig.
4(c) shows the result of applying our method, where the white surface represents the
deformed surface of M under the optimal deformation map ¢.

This result visually demonstrates that the optimal deformed surface (M) is much
improved from the special solution ¢, (M), and the deformed surface (Z)(M ) reflects the
overall shape of the initial surface M while fulfilling the smooth connection constraint.
In particular, it is seen that the optimal deformed surface inherits a swelling from the
initial surface.
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Appendix

Let M be a compact submanifold of R® and @ : (—¢,&) x M — R? a variation of M
with fixed boundary, that is, @ is a C*-map such that

PO0,p)=p forpeM,
D(t,p)=p for—e<t<e pecoM.
Put ¢, :=@(t,-) for —e < t < &. Then ¢, is a local diffeomorphism from M to ¢, (M)

for sufficiently small r. The following equation holds (see, for example, (Gallot et al.,
1990)):

dt

Arca(d (M) = — / (H.Y) dA,
=0
M

=

where H is the mean curvature vector of M, dA is the area element of M and Y is the
variation vector field associated to @, that is,

d

»= é:(p)

1=0

for p € M. Hence, if a variation @ of M has the variation vector field that coincides
with H, the induced flow {¢,} causes the largest decrease in area of M.



M. Kimura et al. / Computer Aided Geometric Design 13 (1996) 243-256 255

(b)

Fig. 4. (a) The initial surface. (b) A special solution. (c¢) The optimal deformed surface.
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