IEICE TRANS. INF. & SYST., VOL.Exx-7?, NO.xx XXXX 200x

[PAPER

Theories for Spring-Mass Simulation in Computer
Graphics: Stability, Costs and Improvements

SUMMARY

Spring-mass systems are widely used in computer animation
to model soft objects. Although the systems can be numerically
solved either by explicit methods or implicit methods, it has been
difficult to obtain stable results from explicit methods.

This paper describes detailed discussion on stabilizing ex-
plicit methods in spring-mass simulation. The simulation proce-
dures are modeled as a linear digital system, and system stability
is mathematically defined. This allows us to develop theories of
simulation stability. The application of these theories to explicit
methods allows them to become as stable as implicit methods.
Furthermore, a faster explicit method is proposed. Experiments
confirm the theories and demonstrate the efficiency of the pro-
posed methods.

1. Introduction

Physics-based methods have greatly enriched computer
animation since they enable the realistic visual simula-
tion of rigid bodies, flexible objects, fluids, brittle ob-
jects, and so on. Among them, spring-mass systems
have played a central role in the simulation of soft ob-
jects such as cloth, where an object is modeled as a set
of particles inter-connected by springs.

The spring-mass systems are described as ordinary
differential equation systems, which can be numerically
solved either by explicit methods or implicit methods.
In earlier studies, the explicit methods were rather pre-
ferred because of its simplicity. However, avoiding nu-
merical instability was a difficult task in the explicit
methods, where the time step and the damping factors
had to be carefully chosen by hand. Baraff and Witkin
pointed out that the high stiffness of spring-mass sys-
tems is the major source of instability, and introduced
the implicit Euler method for cloth simulation [1]. This
greatly improved the stability and an efficient use of the
conjugate gradient method made it practical in cloth
animation. With their success, recent important work
such as [2], [3] has been mainly implemented on the im-
plicit methods, and the explicit methods seem to have
been almost abandoned.

However, the explicit methods still have several ad-
vantages. Since the implicit methods need to evaluate
the differentials of forces, it is difficult to handle non-

Manuscript received January 1, 2003.

Manuscript revised January 1, 2003.

Final manuscript received January 1, 2003.

fThe author is with the Department of Information Sci-
ence, Toho University.

Mikio SHINYA', Regular Member

analytic, procedural forces such as friction. The explicit
methods, on the other hand, only need the force itself,
and can easily deal with such kinds of situations. An-
other point is with numerical accuracy. The stable fea-
tures of the implicit methods does not necessarily guar-
antee their accuracy, and the explicit methods can be
more accurate, as demonstrated by Volino [4]. There-
fore, if the explicit methods can be stably executed,
they may be reevaluated as attractive alternatives to
the implicit methods in spring-mass simulation.
Recently, the author reported that exlicit spring-
mass simulation can be stabilized by eigen analyses
[5]. This papaer describes details of this stabilization
method and proposes an improved explicit simulation
method based the stability theory. We first focus on lin-
ear features of the systems and mathematically define
system stability. This results in the stability conditions
for explicit and implicit methods. Based on this in-
formation, we present the maximum time step for the
explicit methods and the equations needed to determine
the damping coefficients. Based on these results, we de-
velop a stable and fast explicit method, called the lin-
earized explicit Euler method. Experiments show that
this method is even faster than the implicit methods.
The stability conditions allow us to analyze the
time complexity of the explicit/implicit methods, and
it is shown that the complexity of both is proportional
to the number of particles and the square root of the
maximum eigen value of the spring coefficient matrix.

2. Theories on Stability

Stability analysis is well established in the fields of dig-
ital control and digital filtering. In this section, spring-
mass simulation is regarded as a digital linear system,
which allows us to apply their well-tried formulations.

2.1 Dynamic equations and linearization

In general, particle-based mechanics can be formulated
as a differential equation system, such as,

Miy(t) = f(zw(t), 7w (t)), (1)

where the 3n-dimensional vectors x and f represent the
position and applied force of n particles, and the 3nx3n
matrix M represents the mass of each particle.

Force f, generally a non-linear function, was lin-

earized by Baraff for easier handling. When
Ty =20+ T, Ty =19+,

and |z| and |v| are sufficiently small, we can make the
following linear approximation:

f(@,v) = f(20,00)+(0f /0x)(w0)2+(9f [Ov)(v0)v.(2)

The dynamic equation is then approximated by a set
of linear equations as follows:

Mz = fo — Kz — Duv, (3)
where

K = —(9f/0x)(wo,v0), (4)

D = —(9f/0v)(zo,vo), (5)

fo = f(zo,v0)- (6)

By setting K' = M~'K, D' = M~'D, and f} =
M~ fo, we have a linear differential equation system,
T =w, (7)
v =—K'z —D'v+ f]. (8)

2.2 State equations

In the Euler methods, the continuous differentials are
replaced by discrete differences, such as

& = (z[t + 1] — [t])/h, 9)

where z[t] represents the sampled values and h is the
time step. The left side of the dynamic equation is
discretized in this way, but we still have a choice with
respect to the right-hand side, whether to take the val-
ues at t or at t + 1. Explicit methods take the values
at ¢, while implicit methods take those at ¢ + 1.

(1) Explicit Euler method

Applying the above mentioned replacements to Eq. 8
yields a set of linear algebraic equations representing
the explicit Euler method:

z[t + 1] = z[t] + holt], (10)
o[t + 1] = o[t] — h(K'z[t] + D'v[t]) + hf', (11)

or in a more compact matrix form

wlt + 1] = Aw[t] + hgo, (12)
where
atd = (3)i (13)
w={ 1) (14
A= < K hD 41) (15)

Matrix A defines the system and is called the state
transition matriz. Vector w and Eq. 12 are called,
respectively, the state and the state equation.

IEICE TRANS. INF. & SYST., VOL.Exx-7?, NO.xx XXXX 200x

(2) Implicit Euler method

In a similar way, taking the right-hand side values at
t + 1 yields the state equation for the implicit Euler
method as follows:

wit + 1] = Aigwlf] + hp, (16)

‘ 1 14+hD" h
Aip = (1+R*K'+hD') ! < ChE 1 >
The solution, v[t + 1], can be obtained from the lower
half of Eq. 16,

o[t+1] = (1 + h*K' +hD")!
(hK'z[t] + (hD" + L)v[t] + hf)). (17)

The calculation is no longer straightforward unlike that
of the explicit methods, and a linear equation system
17 should be numerically solved at each time step.

(3) Explicit Runge-Kutta methods

The replacement of differentials, Eq. 9, is not the only
way. While the Euler methods simply applies a linear
extrapolation of | fdt ~ hf, the Runge-Kutta methods
apply higher-order extrapolation.

The second-order Runge-Kutta method, also called
the mid-point method, solves the equation by using [6]

kl = hA’LU()
kz = hA(’LU() + k1/2)
'LU(t + h) = Wop —+ kz

for wo = w(t). Thus, the state equation is described as
wn+1] = w(t+h) = (1+hA+(h?/2) A%)w[n],(18)

In a similar way, we have the state equation for the
fourth-order Runge-Kutta method as

wln +1] = (1+hA+ (h*/2)A% + (h*/6)4°
+(h/24) AYYwn). (19)

2.3 System stability

In digital control/filtering theories, system stability is
defined by the state equations. Let us follow their for-
mulation.

First, we defined the stability of the simulation sys-
tem in the following way: when finite force ||f|| < oo is
applied for a finite duration, state w (the position and
velocity) is also finite, ||w|| < oo. In linear systems,
this is equivalent to the statement that from any initial
state w[0], state w(t] tends to zero if no force is applied.

Using state transition matrix A, we can formulate
this by:

w[n] = Aw[n — 1] = A"w[0] = 0 (20)

as n — oo. In the one-dimensional case, both w and A

SHINYA: THEORIES FOR SPRING-MASS SIMULATION IN COMPUTER GRAPHICS: STABILITY, COSTS AND IMPROVEMENTS

are scalars, and |A| < 1 is the necessary and sufficient
condition. In the general case, A is a matrix and it
can be proved that the system is stable if and only if
all the absolute value of A’s eigen values is less than 1.
Therefore, eigen analysis of the state transition matrix,
Eq. 15 provides the stability conditions.

3. Stability Conditions

This section analyzes the eigen values of Eq. 15 and
provides stability conditions that the time-step and
damping factors should satisfy. We start from the sim-
plest case where both x and v are scalars, and follow
this with a generalization. Further, we also analyze
higher-order Runge-Kutta methods.

3.1 2D case

Let us consider the simplest case where both D' = d
and K' = k is a scalar. In this case, the state transition
matrix A is a 2x2 matrix and the eigen values can be
easily calculated from a quadratic equation. By using
dimension-less variables

X =hd, Y =hk, D=X?-4Y, (21)
the eigen values A can be expressed as
A= (1-X/2)£VD/2.

The inequality |A| < 1 yields the stable region in X-Y
plane as:

Y < X (22)
Y >2X —4 (23)
Y >0 (24)

This stable region is shown in Figure 1. An outline of
the calculation is described in the Appendix. When h,
d, and k hold (X,Y) within this region, stable simula-
tion is guaranteed. The divergence was also numerically
tested and an identical result was obtained. As seen in
the figure, the region is tight and the selection of the
damping factors is critical.

In most cases, the spring constant and the mass
are determined by the materials. Thus, let us consider
how to decide the maximum time-step and the damping
factor with the goal of stable simulation.

(1) maximum time-step

As seen in the figure, the maximum value of Y is 4.
Therefore, from the definition (Eq. 21), the maximum
time-step hpq, for given k is given by

Bomaz = 2/Vk. (25)
(2) damping factor
When Y =4, X should be 4, thus,

dmaz = 4/hmaz (26)

guarantees stable simulation.

3

Fig.1 Theoretical stable condition for the explicit Euler
method. The yellow region is the stable region.

3.2 N-dimensional cases

When K’ and D' are simultaneously diagonalizable ma-
trices, modal analysis can be applied, which decom-
poses the problem into a set of 2D problems (See the
Appendix). Let k; and d; be the i’th eigen values of K’
and D', respectively. Modal analysis shows that the
simulation is stable when the stability condition (Eq.
24) is satisfied by all pairs of k; and d;.
The maximum time-step A4, is thus given by

himaz = 2/\/57 (27)

where kg denotes the maximum eigen value of K'.

Although damping factors d; may be determined
one by one, it is more convenient to parameterize them.
We found the Rayleigh damping expression [7]

D' =doI + oK' (28)

to be simple and useful. Constant term dy represents
air resistance, for example, and dominates the low-
frequency, and hence visually significant, motion. The
second term stabilizes the high frequency modes, and
we experimentally confirmed that its visual influence is
very small.

Equation d = dy + ak is a straight line in Figure
1, and is described by

X = doh + (a/h)Y (29)

When the line passes through points (X;44, Yimaz) and
(hdp,0), the line segment 0 < Y < h%ko lies in the
stable region, as shown in Figure 1. This leads to

a = h(Xmaz - dOh)/Ymaza (30)
= h(4 — doh) /4 (31)
hdy < 2. (32)

These are the stable conditions for the damping factors.

Note that dg can be determined based on the ‘terminal
velocity’ of the particles in the free fall situation, and
the second inequality, Eq. 32, automatically holds in
most cases (See the Appendix).

3.3 Stability of higher-order explicit methods

Y | 875,0725)

0 2775 X

Fig.2 Stable condition for the explicit 4th-order Runge-Kutta

method.

With a small amount of additional calculations, it
is also possible to analyze higher-order Runge-Kutta
methods. Only the results are described here, the de-
tails are presented in the Appendix. The stable re-
gion for the fourth-order Runge-Kutta method is ex-
pressed by 8th-order algebraic equations, as is shown
in Figure 2. The maximum Y., =~ 8.75 is obtained
at Xyee =~ 0.725. Therefore, the time-step and «a are
determined by

hmaz =V 875/\/14;_07
h(0.725 — doh) /8.75. (33)

(07

Note that the maximum time step is v/8.75/2 =
1.48 times longer than that of the Euler method. This
supports Volino’s observation that higher-order meth-
ods are more stable than lower-order methods [4].

3.4 Stability of implicit methods

The implicit Euler method is fairly stable. We proved
the following theorem (the proof is presented in the
Appendix).

Theorem

When matrices D' and K' are positive definite, the im-
plicit Euler method is always stable.

This theorem states that the selection of damping
factor D is not so critical. For example, the simple

IEICE TRANS. INF. & SYST., VOL.Exx-7?, NO.xx XXXX 200x

air resistance term, D' = dyI with positive dy, is good
enough to stabilize the simulation.

In the 2D case, or equivalently in the simultane-
ously diagonalizable case, more details can be seen. The
stable condition is described by a set of quadratic in-
equalities; its XY representation is shown in Figure 3.
The figure also shows the over-stability of the method:
in region d < 0,k < 0, although a physical system is
unstable, it is forced to converge by the method.

Fig.3 Stable condition for the implicit Euler method.

4. Linearized Explicit Euler Method

Following the above discussion, we have the optimized
time-step and damping factors. However, the execution
time is still larger than that of the implicit method as
seen in the next section. We found that the key to the
speed of the implicit method is its linear approxima-
tion used in the force calculation. The calculation of
the non-linear force and the maintenance of geometric
properties such as normal vectors are much more ex-
pensive than sparse matrix-vector multiplications. Re-
ducing the number of non-linear estimations allows the
explicit Euler method to be accelerated as well. Based
on this consideration, we introduce the linearization
scheme into the explicit method. At each time-step,
h;, required by stability equation Eq. 25, the force is
evaluated by matrix-vector products as in

f=—-K(x—x0) — D(v—wo) + fo. (34)

Matrices K and D are estimated at a longer time in-
terval, h,;; that is, only as frequently as in the implicit
Euler method, for example, three times per frame. As
seen in the next section, this algorithm is even faster
than the implicit methods. To avoid instability due to
non-linearity, K and D are re-evaluated whenever signs
of divergence are detected. The procedure is detailed
below:

SHINYA: THEORIES FOR SPRING-MASS SIMULATION IN COMPUTER GRAPHICS: STABILITY, COSTS AND IMPROVEMENTS

1) Evaluate K and D.
2) Repeat the following while dt < hy,;:
2.1) Calculate the force using the linear approxi-
mation, Eq. 34.
2) Calculate w = (z,v).

3) Check divergence (e.g., ||v;]| > th), and if de-
tected, discard the latest result and go back
to Step 1 to re-evaluate K and D.

24) dt+ = hy.
5. Experiments and Discussion
In this section, the efficiency of the methods are exper-
imentally compared and their time complexity is ana-

lyzed.

5.1 Time complexities

Fig.4

Draping cloth mesh.

The factors determining the execution time are the
number of particles, n, and the maximum eigen value of
K, denoted by kg. The CPU time was measured for the
implicit Euler (IMP), the explicit Euler (EU), the lin-
earized explicit Euler methods described in the previous
section (LEU), and the explicit 4th-order Runge-Kutta
method (RK4). The test sequence was the draping ac-
tion of a cloth under gravity, similar to Volino’s exper-
iment [4]. Collision handling was turned off. The test
object is a square mesh, shown in Figure 4. The phys-
ical model adopts Baraft’s potentials for shear, bend,
and stretch [1]. The time-step for the implicit Euler
is kept at 0.01 seconds because a too large time-step
makes it impractical to deal with collision and non-
linearity. For the explicit methods, on the other hand,
the time-step is set to the maximum according to Eqs.
27 and 33. In the linearized explicit Euler method, the

CPU second

2000
EU

1500
RK4

1000
/ ™Mp
500
Il Il

0 5000 10000 15000 n

Fig.5 Computation time versus number of the particles.

TotalCPU second
200

EU

RK4

100
™MP
7 LEU
O Il Il

4000 ko

1000 2000 3000

Fig.6 Computation time versus square root of the maximum
eigen value (vko).

interval of non-linear evaluation is also set at 0.01 sec-
onds.

The results are shown in Figures 5 and 6. In the
first experiment, we changed the number of particles,
while the spring coefficients of the particles are kept
constant; this holds the maximum eigen value ky almost
constant. In the second experiment, the number of par-
ticles was 16 x 16, and the spring coefficients were con-
trolled. As shown in the figure, the linearized explicit
Euler method is the fastest; twice as fast as the implicit
Euler method. The explicit Runge-Kutta method is
also faster than the naive explicit Euler method, since
it takes advantages of linear force estimation and longer
time-steps.

The figures also show that the growth in the re-
quired cpu-time for all methods is basically propor-
tional to both n and v/ko, and thus, the time complexity
of the methods is O(nkém). This is rather obvious for
the explicit methods because the time-step is propor-
tional to the inverse of v/ko, and each step costs O(n).
The cost of the implicit Euler method is more compli-

cated and is discussed in the following section.
5.2 Fuller analysis of implicit Euler

In the implicit Euler method, the linear equation sys-
tem Hd, = bshould be solved at each time-step. Baraff
adopted the preconditioned conjugate gradient (PCG)
method to solve the equation. The PCG method it-
eratively solves the equation, and in each iteration,
matrix-vector product He is calculated [1]. Since H =
(1 + 2K’ + hD') is very sparse, typically with just
a constant number of non-zero elements per row, the
cost of the multiplication is O(n). Hence, the number
of required iterations determines overall complexity.

It is known that the convergence ratio at the i’th
iteration [8] is

ex = lleill/lleoll

< 2¢F /(1 4 ¢*F)
(Vo —1)/(Vo +1)
g = Amaw/Amin-

When the error falls below the threshold e, after IV
iterations, we have

2N ~ log(en/2)(Vo), (35)

for o > 1. Therefore, the convergence rate depends
on the square root of the ratio of the maximum and
minimum eigen values. The maximum/minimum eigen
values of H, pimin and ez, can be roughly estimated
as

c

Mmin ~]-7
Mmaz ~ hsz-

By using Eq. 35, an estimate of the number of required
iterations, Np.4, is given by

Npey ~ O(hkY?). (36)

The estimation is based on the worst-case analysis and
does not provide an exact value, but it does explain the
results shown in Figure 6.

Eq. 36 also raises the interesting fact that the re-
quired iterations per time-step are reduced when the
time-step decreases. Figure 7 shows the growth in the
total number of iterations and the total cpu time with
respect to the time-step. As shown in the figure, the in-
crease in required iterations is very mild when the time-
step decreases. The evaluation cost of K pushes up
the cpu time, but the growth is less than proportional
in this range. This suggests that the adaptive time-
stepping approach is still useful in stabilizing the sys-
tem without large additional cost. Indeed, the positive
definiteness of H, not that of K, is strictly required by
the PCG method for convergence. Switching to other
general, more expensive solvers like Gauss-Jordan can
be fatal in terms of cost. In such cases, decreasing the
time-step can keep the positive definiteness of H by
reducing the influence of K’ on H.

IEICE TRANS. INF. & SYST., VOL.Exx-7?, NO.xx XXXX 200x

reltive grow th
10
relative CPU tine
relative number
of terations | 1
0001 001 01
tin e-step
01

Fig.7 Computation time and number of iterations versus
time-step.

5.3 Implementation issues

In the explicit methods, maximum eigen value kg has to
be calculated to determine the time-step. Although this
calculation is expensive in general, the maximum eigen
value of sparse matrices can be inexpensively calculated
by the power method [8], [9]. This runs at O(n) in prac-
tice. In most cases, ky does not increase drastically,
thus ko is calculated as a pre-process. The time-step is
then calculated for &k, = Fypko with safety factor Fyy
(1.5 in our case). This is recalculated only when diver-
gence is detected. The collision detection is similar to
that of Baraff, with a hierarchical bounding box struc-
ture, and edge-edge/vertex-mesh collision detection.

6. Conclusion

The stability theories introduced here made the explicit

methods as stable as the implicit methods. Based on

our theories, a faster explicit method were developed,

and its efficiency was demonstrated by experiments.
The advantages of the explicit methods are:

e faster execution with linearization,
e casier handling of non-analytic, procedural forces
such as friction.

Therefore, when Rayleigh damping is acceptable, the
linearized explicit Euler (LEU) method is more efficient
than the implicit method. When accuracy is impor-
tant, the explicit Runge-Kutta method might be more
appropriate.

This paper was based on the linear theories, but
system non-linearity can be another source of insta-
bility. Future work includes the analysis of the non-
linear properties to provide more general framework for
physics-based animation.

SHINYA: THEORIES FOR SPRING-MASS SIMULATION IN COMPUTER GRAPHICS: STABILITY, COSTS AND IMPROVEMENTS

Acknowledgments

The author would like to thank Makoto Tsukada,
Emiko Ishiwata, and Tian-Bo Deng for their helpful
discussion. This research was partially supported by
the Ministry of Education, Science, Sports and Calture,
Grant-in-Aid for Science Research (C), 2003, 14550380.

References

[1] D. Baraff and A. Witkin, “Large steps in cloth anima-
tion,” Proceedings of SIGGRAPH’98, pp.43-54, ACM Press
/ ACM SIGGRAPH, 1998.

[2] K. Choi and H. Ko, “Stable but resposive cloth,” Proceed-
ings of SIGGRAPH 2002, pp.604—611, ACM Press /| ACM
SIGGRAPH, 2002.

[3] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treat-
ment of collisions, contact snd friction for cloth animation,”
Proceedings of SSIGGRAPH 2002, pp.594-603, ACM Press /
ACM SIGGRAPH, 2002.

[4] P. Volino and N. Magnenat-Thalmann, “Comparing effi-
ciency of integration methods for cloth simulation,” Proceed-
ings of CGI’01, 2001.

[5] M. Shinya, “Stabilizing explicit methods in spring-mass sim-
ulation,” Proceedings of CGI2004, to appear, 2004.

[6] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vet-
terling, Numerical recipes in C, Cambridge University Press,
1988.

[7] D. James and D. Pai, “Dyrt: Dynamic response textures for
real time deformation simulation with graphics hardware,”
Proceedings of SSIGGRAPH 2002, pp.582-585, ACM Press /
ACM SIGGRAPH, 2002.

[8] Y. Saad, Iterative methods for sparse linear systems, PWS
Publishing, Boston, 1996.

[9] H. Togawa, Handbook of numerical methods, Science-Sha,
1992. (In Japanese).

Stability conditions for explicit
methods

Appendix A:

For convenience, let us represent the state transition
matrix as

A=1+hnC.

Using C' and its maximum eigen value p, the stable
condition |1+ p|? < 1 is rewritten as:

L+ 2R(0) + [l < 1,

R(u) < —lul?/2.
For convenience, pu is represented in the form of
n=P+QVD.
When D < 0,
lul* = P* = DQ?,
R(p) = P,

and the condition is

7

P? - DQ@* < —2P. (A1)
When D > 0, the conditions are:

-2<P<O0 (A-2)

P?* > DQ? (A-3)

(P +2)? > DQ? (A-4)

Therefore, calculating P and @ provides the sta-
bility conditions for each method.

A.1 Explicit Euler

For the explicit Euler method,
1 h
AZ(—hk —hd+1>’ (A-5)

c=(% %) (26)

The eigen values, p;, can be calculated by using the
quadratic equation,

det(C — pil) = pa (1 +d) + k=0,
Solving it yields:
P=-X/2, Q=1/2.
where X, Y, and D are defined by Eq. 21.

A.2 Fourth-order Runge-Kutta

From the state equation 19, the eigen value for the
fourth-order Runge-Kutta, 4, can be expressed by us-
ing that of the Euler method, u;, as:

hpn + (1/2)(hpn)? + (1/6) (hpa)® + (1/24) (g)*,
and then,
P=-X/2+X%/4—X?/12+ X*/48 — Y /2 + XY /4
—X?Y/12 +Y? /24,
Q=-1/2+X/4—X?/12+ X?/48 + Y/12 — XY /24.
These provide the stability condition using Eqs. A-1
and A-4.

A.3 Simultaneously diagonalizable case

When D' and K' are simultaneously diagonalizable, all

of their eigen vectors y; are common:
D'y; = diyi, K'yi = kiys.

Let us denote (x,v) as a linear combination of y; as in:

()= (55

Putting them into the state equation yields a set of 2D
equations:

(ig >[t+1]: (—llzki —hdi:+1 > (ig > [t]-

This is in the same form as Eq. A-6. Therefore, if
all pairs of (k;,d;) satisfy the 2D stable condition, the
original n-dimensional simulation is stable.

Stability theorem of implicit Eu-
ler

Appendix B:

When matriz D' and K' are positive definite, the im-
plicit Euler method is always stable.

Proof

The eigen values of state transition matrix A;p are the
inverse of those of A;E1. For easier calculation, we al-
ternatively prove

|all eigen value of A;}| > 1.
Set

_ 0 -1
Ai,§:1+h(K, D,)
1+h0imp,

and we show that the real part of any eigen value of
Cimp s positive.

Let A = Ao +1\; and w = (z v)! be an eigen value
and eigen vector of Cyp,p, respectively. From Cippw =
Aw, we have

—v = Az, (A7)
K'z +D'v = M. (A-8)

Multiplying Eq. A-8 by v*! from the left, and using
Eq. A-7, we have

Nz K'z + v D'v = Mv*to. (A-9)

From the definition of positive definiteness,

Ky = oM 'Kz >0,
v*D'v > 0,

Taking the real part of Eq. A-9 yields

0 < v*D'v = N(v*'v + 2" K'z),
0 < Xo.

Therefore, the real part of any eigen value of Cjy,y, is
positive. Eigen values of 1 4+ hCjy,p, are 14+ hA. With
positive h,

[14+hA >1+hX > 1.

This completes the proof.

IEICE TRANS. INF. & SYST., VOL.Exx-7?, NO.xx XXXX 200x

Appendix C: Terminal velocity and dg

Let us consider the physical meaning of dy. When a
particle falls under gravity, the dynamic equation is:

i}:g_dovv

which approaches zero when ¢ — oco. Setting v = 0, we
have the terminal velocity

Voo = g/dO-

For example, if vo, ~ 1 m/sec, dy ~ 10 sec™!. Since

time-step h is usually h ~ 1072, then, Xy = hdy ~ 0.1
in typical cases.

Mikio SHINYA iscurrently a Profes-
sor at Department of Information, Toho
University. He received a BSc in 1979,
an MS in 1981, and a phD in 1990 from
Waseda University. He joined NTT Labo-
ratories in 1981, and moved to Toho Uni-
versity in 2001. He was a visiting scien-
tist at the University of Toronto in 1988-
1989. His research interests include com-

puter graphics and visual science.

