COMPUGRARHICS 91

First International Conference on
Computational Graphics and
Visualization Technigques

16-20 September 1981 - "Villas de Sesimbra",
Sesimbra, PORTUGAL

PROCEEDINGS

VOLUME I

Edited by Harold P. Santo

AT

Real-Time Impact Dynamics Simulation

Marie-Claire Forgue and Mikio Shinya

NTT Human Interface Laboratories
1-2356 Take, Yokosuka, Kanagawa, Japan
{forgue/shinya}@nttcvg.ntt.jp

Abstract

This paper describes a simple real-time impact dynamics simulation technique. It in-
volves the use of a fast interference detection algorithm to identify the objects’ faces
that will interfere. A standard collision detection algorithm is then run only on the
much smaller subset of surfaces that have been found to interfere; this can be done very
cheaply. We then use physical laws to compute the trajectories of rebounding objects
from the collision data. The application described here advances the field of impact
dynamics by simulating realistic rigid-body motion in real-time.

1 Introduction

Incorporating physics into computer animation has so far lead to many interesting pieces
of work, dedicated either to rigid bodies {3,4] or to deformable bodies {7}, or both [8].
These dynamic approaches are successful in achieving realistic behavior (clearly the first
priority), but they are too computationally expensive to be usable in practice. They
allow neither interactive use, nor real-time simulation, either of which could be used
to preview the results with simply rendered or wireframed models. This is in contrast
with kinematic or keyframing techniques which do allow interactive feedback.

This paper presents a technique that achieves real-time simulation for physically-
based modeling. Our approach involves detecting collision points first. and then, re-
alistically simulating the motion of rebounding objects after impact. Experiments on
impact dynamics simulation in [3] clearly demonstrate that collision detection takes up
to 90% of the overall computational cost. Yet, the standard collision detection algorithm
is not as computationally efficient as it could be: in section 2, we describe a real-time
collision detection method which combines the use of a real-time interference detection
algorithm [6] and a standard collision detection algorithm [2].

Once one has determined where collision between two objects will occur, one needs

427

to calculate the resulting trajectory. In section 3, we describe the physical laws involved
in impact dynamics and show how they can be used efficiently.
Finally, in section 4, we describe our implementation and provide some experimenta]

results, which confirm that our method allows real-time simulation.

2 Real-Time Collision Detection

Collision detection is generally time-consuming, particularly when a large number of
objects is involved. Typically, the computational complexity of existing algorithms like
Bovse's [2], for example, is in O(n?), where n is the number of polygons in a polygonal
environment. This is not acceptable for the real-time dynamics' simulation needed in
computer animation.

In a different paper (6], we proposed a new type of interference detection algorithm

with the following advantages:

O(n) complexity in the total number of faces of objects,

speed can be increased with standard graphics hardware,

applicable to any renderable surface,

simple and easy to implement.

Basic results from a standard collision detection algorithm, such as Boyse’'s, are the
locations of collision points, and the normal vectors at these points. However, such
information is not provided in full by our interference detection algorithm; we thus
employ a standard collision defection algorithm, but only for the small subset of faces

that do interfere.

projection of z-list creation

objects along
z direction {z_value, face_id } {)\

z-list sorting

interfering faces l« overlap checking __//

list creation

Y

Figure 1: Flow-chart of the interference detection algorithm [6].

Let us briefly explain the real-time collision detection algorithm using the flow-chart
given in figure 1. First, given an array of pixels called the z-list buffer, we project
along a certain direction {z-direction in this case) and scan-convert each object. For

each drawn pixel from the scan-conversion, we built a z-list containing pairs of z-values

bt (b &

s s

and associated face identifiers (face.id’s) couples: [z-value, fuce_id], [z’-value, face'1d].
Then, when all objects are processed, we sort the z-list against the z-values for each pixel
drawn. Finally, if a sorted z-list contains pairs with dissimilar faceid’s, interference is
detected. An interfering faces list is then created for the z-list buffer.

This list of interfering faces is given to the standard collision detection algorithm.
Let us describe the main features of Boyse’s algorithm. Collision occurs in the following
two basic situations: (i) a vertex collides with a face and (i) an edge collides with
another edge. In the first case, collision 1s detected when the trajectory of a vertex
intersects the face of another object. In the second case, collision is cletected when the
trajectory of an edge intersects an edge of another object. In both cases, it can be
considered as a face-edge intersection problem.

Objects move along trajectories. Though keeping track of movements can be ap-
proximated either as a linear interpolation or a bi-linear interpolation between initial
and final positions of a moving object, we choose to decompose any general motion into
2 translation part followed by a rotation part. Boyse's algorithm allows collisions to be
detecied between a rotating vertex and a stationary face, and between a rotating edge
and a stationary edge, which covers cases (i) and (41). Figures 2.b and 3.b illustrate the
way the intersection is found between a circle and a face and between a cone and an
edge. In case (1), the impact point is determined as the intersection point between the
moving path of the vertex of object A and the faces of object B (figure 2.2). In case (i)
(figure 3.2), it is set as the intersection point between the polygon swept by the moving

edge of object A and the edges of the polygons of object B.

vi

v2

Figure 2: Boyse’s case (1)

According to the type of contact obtained from collision detection, some rules are
applied to obtain the normal vecior at the point(s) of contact. In case (), the normal
vector for a contact involving a face is the normal of the face at the contact point.
In case (7i), the normal to the contact point is the vector product of the normals of

the intersecting edges. Some contacts are said to be indeterminate or degenerate {1},

e

like the vertex/vertex contact, and one must develop empirical rules to eliminate this

indetermination (1,3].

vi

v2 v'1 v2

Figure 3: Boyse's case (1)

v'2

Figure 4 summarizes the steps in our method. We first perform interference detection
with a simple test that consists of comparing the minimum and maximum z values of
the moving object with the maximum and minimum z values of the set of the other
objects. In case of a positive result from this comparison step, we run the full z-list
algorithm. With the produced list of interfering faces, we apply a standard collision
detection algorithm using its vertex/face and edge/edge collision tests. To confirm the
results and obtain full contact information (positions and normal vectors of the contact
points), we apply a static interference check, that is a detection of iﬁtersections among

objects in fixed positions.

Boyse's
interference algonthm |dynamic interference checking:
detection simple_ interference * edge/edge lisi
algorithm .| detection (2 planes) * vertex/face } collision tests
y 'RUE | face-id list ,
rasterization and : static interference checking:
z-list creation _ position of contact
nommal vectors points :

Figure 4: Synopsis of our collision detection method

3 Impact Dynamics

While collision detection is the main requirement for some applications, animation sys-
tems Incorporating physics must calculate the direction and velocity of rebounding
objects. This is the fleld of impact dynamics, which can be adequately modeled by

Newton’s laws. A good overview of the theory and equations involved can be found

in (4] and [3]. Below, we summarize the main concepts and results involved in impact
dynamics.

Objects have the following physical characteristics: mass m;, center of mass ¢,
moment-of-inertia tensor I;, velocity (linear ¥; and angular ;) and momentum (linear
p; and angular i).

Dealing with the collision of rigid bodies must guarantee the conservation of linear
and angular momentum of the rebounding objects. The change in linear momentum
is equal to the impulse, noted fmp. If linear momenta is noted as p; = m; ¥, then
the impulse on body 4 due to impact with body B is equal to the change in the linear

momentum of A4 (f is the force):
At I? dt = fmp = My (UA end 1—;.-& init) (1)

The impulse on B is:
- fmp = mpg (6.8 end — 2-).8 init) (2)
As for the change in angular momentum, the angular impulse on 4 is specified by
(N is the torque):

th = 'FA Xfmp=‘lj4:nd—l-:4init k3)
At

with: I-'A = T4 W,

Similarly, we get the angular impulse on B:
75 X (= Inp) = IB end — 1B init ' (4)

7, and 7g are the vectors set from the centers of mass of A and B respectively to the
point of impact.

Elasticity of the collision is taken into consideration by means of a Newtonian coef-
ficient, or coefficient of restitution, noted £, whose values range from 0 (inelastic) to 1
(elastic). In terms of energy conservation, an elastic collision is equivalent to no loss of
kinetic energy. Newton's rule [5] relates £ to the relative velocities of two particles at

the point of contact:

velocity of separation 'V, - N (s

velocity of approach - V. N

From equation (3), we can write the generalized Newton's rule for rigid bodies as
the relation between & and the components, along the common normal vector N at the

point of contact, of the relative velocity before and after the collision:

[EA end T (r.; X Wy end)] - _/\-': — {‘E‘B end + (7-.‘3 % IEB end)]] _/\—7 A
< (6)

(T4 init + (Fa X T inic)] - N~ [Ty imie + (Fa X Wa imi)] - N

430

Assuming that objects in contact will not slide, i.e, there is enough friction to prevent
it, we can write down the following equations featuring the orthogonal components of
the velocity of separation, notated by u and v (they are perpendicular to the normal

vector and their directions are given respectively by V, x N and by N x (V, x _:\"?)):

(Vo) = 0 (1)
(Vo) =0 (8)

These last two equations hold given sufficient frictional force. From Coulomb's law,
this implies that: | (fmp)“ < o | fmp.ﬁ | (with g the coefficient of friction). If the
non-sliding condition does not hold, equations (7) and (8) are not valid and must be

replaced by assumptions on the orthogonal components of the impulse:

(fmp)u = 0 (9)
(fmp)u = H Ime-NI (10)

In summary, it is possible to get the final linear and angular vclocities for each
object, as well as the impulse fm,,, since all unknowns can be calculated with a complete
set of equations: (1), (2), (3), (4), (6), and {(7),(8)} or {(9),(10)}. These equations
can be solved by a Gauss-Jordan elimination method, for example. Considering the
case of impact of 2 moving object with a stationary object, the system of equations is
reduced to 9 equations of 9 unknowns (linear and angular velocity of the moving object.
and impulse). Finally, if the relative velocity of the moving object is less than a small

threshold, then the colliding objects can be considered to be in continuous contact.

4 Implementation and experimental results

We developed a simulation system using the collision detection method and the impact
dynarmics approach described above. Figure 5 presents a flow-chart of the system; notice
that the most time consuming part of the computation is avoided in the case of non-
colliding objects. In our implementation, all objects are clipped to the bounding hox
of the moving object and then scan-converted to the z-list buffer. Once interference
1s detected at a given frame, we use Boyse's collision detection algorithm only for the
faces found in the interference list. An illustration of this is shown in figure 6. This is
a shot of a head and a height field in contact, just before impact dynamics is applied.
The colored faces are those contained in the interfering faces list. Since the number of
faces in the list is expected to be small, the execution of the algorithm should be quite

rapid.

P i by

o) PP A A 1 e b Y

We have run several experiments to validate the system’s performance. All tests
involved a single moving object colliding with a single stationary object. One of the
resulting images is reproduced in figure 6. The two objects, the head and the height
field, contain respectively 1875 and 3032 polygons. The animation was displayed on
an IRIS 4D/25. For a 512x512 image resolution, the measured processing time 1s 0.24
s/frame. By increasing the number of polygons in ‘the height field support, we get
different execution times for the same test scene, which are shown in figure 7. Note that
the display time clearly is the largest component of the total execution time. We thus
can achieve real-time impact dynamics simulation as long as it is possible to display the
image in real-time. Figure 8 gathers shots of other animated scenes. Toral execution
time and total number of polygons involved in each scene are indicated.

We adjusted the value of the Newtonian coefficient £ for each scene such as the
one featuring the expresso machine and the Mandelbrot field, so that all impacts would
take place within the Mandelbrot field support. Modifving the value of £. that is the
elasticity of the impact, allows one to model different behaviors from the same colliding

objects.

5 Conclusion

Real-time impact simulation becomes possible if one uses a simple interference detection
method. By managing a list of interfering faces in a polygonal environment. we constrain
the number of intersections tested. A standard collision detection algorithm is then
invoked in order to get exact collision points, but only for the indicated faces. After
collision detection analysis and static interference checking, impact d}'.nar;w.ics is apphed
to produce the simulation. The approach has been implemented and its efectiveness in

achieving real-time simulation of dynamic systems has been confirmed experimentally.

References

'1] D. Baraff. -Analytical Methods for Dynamic Simulation of Non-peneirating Rigid

Bodies’. In Computer Graphics 23 (3), pages 223-232, July 1989.

.

2] J.W. Boyse. ‘Interference Detection among Solid and Swrfaces’. Coririunications of

the ACM, pages 3-9, January 1979.

(3] J.K. Hahn. ‘Realistic Animation of Rigid Bodies’. In Computer Grophics 22 (4).

pages 299-303, August 1938.

[4] M. Moore and J. Wilhelms. ‘Collision Detection and Response for Computer Anj.

mation’. In Computer Graphics 22 (4), pages 289-298, August 1988.

[5] R.A.Becker. Introduction to Theoretical Mechanics. McGraw Hill Book Company,
1954.

[6] M. Shinya and M.C. Forgue. ‘Interference Detection through Rasterization’. To
appear in the Journal of Visualization and Computer Animation 2 (4), October
1991.

[7] D. Terzopoulos. ‘Elastically Deformable Models’. In Computer Graphics 21 (4),

pages 205-214, August 1987.

[8] D. Terzopoulos and A. Witkin. ‘Physically Based Models with Rigid and Deformable
Components’. IJEEE CG&A, November 1988.

INITIAL STATE
initial velocities
initial momenta

Y

REAL-TIME INTERFERENCE
DETECTION ALGORITHM

> list of interfering faces
4 yes “--e... g
: BOYSE'S ALGORITHM
no T
VISUALISATION collision points
: normal vectors
A ! v
IMPACT DYNAMICS
v _ impulse
UPDATE /
new velocities
new momenta

Figure 5: Impact dynamics simulation system

S i h o

Figure 6: Interfering faces

seconds / frame

151
——=—— collision det. + impact time
——— display time
——0— total execution time
104
0.5
0.0 T T T T T
4 4000 8000 12000 18000 20000

polygons

Figure 7: Executlon times v.s. number of polygons

434

(450 + 386) polygons: 0.35 s/frame

. Figure 8: Other

(836 + 512) polygons: 0.53 s/ frame '

tested scenes

T T E T PR SRR

[

TR P VU IR L™ VY I0% PR

U R RS g e

3
=
Tx

A

