RESEARCH PAPER

Mikio Shinya
Marie-Claire Forgue

NTT Human Interface Laboratories, 1-2356,
Take, Yokosuka, Kanagawa 238-03, Japan

SUMMARY

INTRODUCTION

Interference detection is an important issue
in many fields, e.g. computer animation,
robotics, computer-aided geometric design
and artificial reality. Many studies have
been made to detect interference through
geometric calculations, and existing algor-
ithms can be classified into two main
ap?roaches: calculating object intersection,
=% and calculating the distance between
objects.>® However, there are four serious
problems with either approach.

1. Cost: complex objects are compu-
tationally expensive, typically O(»?), for
the number of polygons, #.

2. Robustness: because of numeric errors,
it is difficult to build a program robust
for all conditions, e.g. for a vertex
touching another vertex, an edge on
another surface, and so on.

3. Applicable surfaces: usually only particular
kinds of surfaces can be treated, typically
polyhedra, and sometimes just convex
ones.

4. Simplicity of implementation: the algor-
ithms are wusually complicated to
implement due to the necessity of
carefully handling special cases.

Space subdivision techniques such as octree’
and hierarchical bounding box techniques®
do save time. However, in applications such
as computer animation, the space structures
must be rebuilt frame by frame whenever the
objects move or are deformed, which is
generally too expensive. Moreover, the com-
putation cost still remains O(#?) in the worst
case.

Several studies have recently demonstrated
that the rasterization scheme can simplify
some geometrical problems, such as path
planning,’ ray tracing CSG objects'” and

1049-8907/91/040132-03$05.00
© 1991 by John Wiley & Sons, Ltd.

THE JOURNAL OF VISUALIZATION AND COMPUTER ANIMATION VOL 2: 132-134 (1991)

Interference Detection through
Rasterization

Interference detection is a useful technique, but it is also generally time-consuming. In
this paper, a new type of interference detection algorithm is proposed for real-time
interference detection. The algorithm first rasterizes the projection of the target objects
and calculates the z-values, just as done by the z-buffer visible surface algorithm. For
interference detection, all z-values and pointers to the corresponding faces of objects are
saved in a z-list for each pixel. Sorting the z-list against the z-values allows the detection
of overlapping objects in the z-direction at each pixel position and, thus, finds interfering
faces by referring to the face pointers in the z-list.

The algorithm is simple and easy to implement. Its computational complexity is directly
proportional to the number of polygons, and, in addition, standard graphics hardware
can be used to greatly accelerate execution. Another advantage is that the algorithm can
be applied to all ‘ray-traceable’ objects, including algebraic surfaces, and procedurally
defined objects; traditionally these were not suitable subjects for interference detection.

The algorithm is implemented on a graphics workstation using a standard graphics
library. Interference detection at a practical interaction speed is achieved for complicated
objects such as polyhedra with thousands of polygons. The algorithm can be used in two
ways: for inexpensive interference detection, and as an efficient culling method for more

precise collision/interference detection algorithms.

KEY WORDS: Interference/collision detection
Computer animation

contour tracing.!! In this paper, we apply
rasterization techniques to interference
detection and propose a new type of inter-
ference detection algorithm.

The algorithm first rasterizes the projection
of objects and calculates their z-values, just
like the z-buffer visible surface algorithm.
For interference detection, all z-values and
pointers to the corresponding faces of objects
are saved in a z-list at each pixel. Sorting
the z-values in each z-list detects object
overlaps in the z-direction at each pixel
position, and thus, interfering faces are found
by referring to the face pointers in the z-list.

The advantages of the algorithm are as
follows:

(a) it is simple and easy to implement

(b) it has linear time complexity pro-
portional to the total number of faces
per object

(c) acceleration is possible with standard
graphics hardware

(d) it is applicable to any renderable
surface.

A drawback of the algorithm is that its
resolution is finite. However, there are many
applications which do not require exact
solutions. For example, visual realism is
sufficient in computer animation. In robotics,
as well, resolution greater than the accuracy
of robot control is sufficient.

When more accuracy is required, the
algorithm can be used as an efficient culling
algorithm, i.e. if interference is detected,
more precise collision/interference detection
programs can be called.

ALGORITHM
Consider the example shown in Figure 1,
where A, B and C are the objects being

Rasterization Z-buffer algorithm Robot simulator

examined. The z direction is the projection
direction, and x; is a pixel on the projection
plane. If two objects interfere with each
other, there exists a pixel where the z-ranges
of the objects overlap. In the example, the
z-ranges (2o0,202) of object A and (201,203) of
object B overlap at the pixel xo, and thus A
and B interfere. On the other hand, objects
A and C do not have overlapping z-ranges
at any pixel, so they do not interfere at all.

This scheme is realized in the following
way. To store the z-ranges of each object,
each pixel contains a list of object identifiers
(object-ids) and the z-value pair, which is
called a z-list. All of the objects are projected
and scan-converted onto the pixels in a
similar way to the z-buffer algorithm, and
their object-ids and z-values are stored in
the z-list. For example, the four pixels of the
objects in Figure 1 are stored in the z-list as
shown in Figure 2(a), where z;; is a z-value
and A, B, C are object-ids.

Figure 1. An example of rasterized objects

Received February 1991
Revised June 1991

INTERFERENCE DETECTION THROUGH RASTERIZATION

Xo — (Zoay/’») - (Zosz) - (Zox.B) - (ZoayB)

X, - (z0,4) — (2124) — (213,B) = (211, B)

X; — (e2m,4) — (220, 4)

Xs — (235,4) — (220,4) — (za,4) — (204, 4)
- (Zsa,c) - (Zaz,C)

(a) z-list before sorting

Xo — [(z00,4) = (20, B)] — [(z02,4) = (203, B)]

X - ‘(ZmaA)—‘(lu-B)l - [(Zn,A)—‘(ZuLEH

X2 — |(220,4) = (221, 4)

X; = [(Zao,A)—*(lshm - [(232,0)-—*(z33,C)J

|

(234, A) = (235, 4)

(b) z-list after sorting

Figure 2. Z-list

execution time (seconds)
1.200

1.000

0.400

0.200

-0.000
° 2000 4000 €000 000 10000

number of polygons

Figure 3. Execution time vs. number of polygons

Figure 4. Test objects in the experiment

To detect overlaps in z-ranges, the z-list
is sorted against z-values at each pixel. For
example, the z-list shown in Figure 2(a) is
sorted as shown in Figure 2(b). If a sorted
z-list contains pairs of dissimilar object-ids,
then interference is detected. In the list in
Figure 2(b), pixel xo contains the pairs [(2q0,
A), (zo1, B)] and [(202, A), (203, B)] (in the
Figure, pairs are highlighted by boxes). The
two pairs are dissimilar.

In some applications, information on inter-
fering faces is very important, and in this
case, the face identifiers (face-ids) can be
also saved in the z-list.

One pseudocode of the algorithm is as
follows:

for all objects {/*make the z-list*/
draw_id—and_z(object); /*project and
scan-convert*/
for all pixels drawn {
append_id_and_z(z_list);
/*append (id,z) pair to the list*/
}

for all pixels drawn {
sort_z(z_list); /*sort the z-list*/
if (overlap{z_list)) { /*if overlapping®/
append_id_to_list(); /*make the
list of interfering faces*/
}

The complexity of the algorithm is esti-
mated for polygonal objects as follows. Let
the area of the projected image be A pixels,
n be the total number of polygons, and p be
the average number of z-list items per pixel.

The algorithm consists of three main parts;
these are object transformation, pixel drawing
and z-list sorting. The complexity of each
part is detailed as follows:

1. object transformation: since all vertices
are transformed for the object trans-
formation, the cost is proportional to
the total number of vertices, and thus we
get O(n), assuming a constant number of
vertices per polygon.

2. pixel drawing: the total number of drawn
pixels is pA, so the cost of pixel drawing
is O(pA).

3. z-list sorting: sorting a z-list with p items
costs O(plogp). The number of z-lists
is A; thus, the total cost is O(Aplogp).

Finally, when the total number of drawn
pixels pA is constant, the complexity of the
algorithm is directly proportional to the
number of polygons.

For polygonal objects, standard graphics
hardware can considerably accelerate the
calculation speed. However, since the algor-
ithm uses only sampled z-values, it can deal
with any kind of surface for which ray
intersection can be calculated (i.e. ‘ray-
traceable’). In general, ray—surface intersec-
tion calculations are much easier than those
of surface—surface intersections. Previously
untreated surface classes can now be used
for interference detection. This is a significant
benefit of the algorithm.

IMPLEMENTATION

We implemented the algorithm on a Personal
IRIS 4D/25 that contained the GL library.
The applicable object shapes are currently
either polygons or NURBS surfaces. Only
maximum or minimum z-values are stored
in the z-buffer. Because of this limitation,

133

the stored z-lists are not assured to be
complete in all cases. Fortunately, the z-list
is complete for convex objects; thus the
program returns correct answers for them.

For general polyhedra, when the program
returns no interference the objects do not
interfere. When interference is detected,
complete z-lists should be built to get the
correct answer. This can be performed by,
for example, ray tracing all pixels where
interference is detected, or by ‘software’ z-
buffering over these pixels.

Implementation was performed in a
straightforward way using the GL library.
Object-ids and face-ids are stored in the
RGB plane and z-values in the z-plane. To
obtain maximum and minimum z-values
of objects, objects were drawn twice with
different logics (less than equal and greater
than equal), and stored in the main memory
(Irectread).

Figure 3 shows the execution time of the
proposed algorithm as a function of the
number of polygons n. As expected, the
execution time is linear in #. The execution
time is almost equal to the display speed,
and an interactive speed can be achieved with
thousands of polygons (e.g. 0-7s for 5000
polygons). The pixel resolution used is
128x128. The test object was the randomly
displaced mesh shown in Figure 4.

We also implemented a typical inter-
ference/collision detection program, based
on polygon-edge intersection.! The required
CPU time was measured under the same
condition, and the result is shown in Figure
5. For comparison, we replotted the execution
time of the proposed method in this Figure.
Note that the comzplexity of the traditional
algoirthm is in O(n*), and that the algorithm
becomes impractical when the number of
polygons is greater than one hundred. The
difference in the computational complexities
of the two methods is clearly demonstrated,
and at n = 1000, the proposed method
is more than 1000 times faster than the
conventional one.

Figure 6 shows the execution time of the
rasterizing method when pixel resolution
changes. As expected, it linearly increases
with the number of pixels.

The method was applied to a real-time
animation involving dynamic impacts. Figure
7 shows two shots from a sequence of a
teapot falling onto a Mandelbrot field. The
teapot consists of 552 polygons and the field
contains 8192 polygons. The animation was
displayed in real time on the IRIS 4D/25,

time (seconds)
102

i

10° 4

-« Conventional method
- Proposed method

10! 02 w 10*
number of polygons

Figure 5. Comparison between conventional and
proposed methods

134

execytion time (seconds)
08

o (12BN @862 400000 8121812 300000

(number of pixels)*

200000

Figure 6. Execution time vs. number of pixels

thus clearly demonstrating the advantage of
the proposed method.

CONCLUSION
This paper has proposed a new type of
interference detection algorithm that uses
rasterization techniques.

The advantages of the algorithm are as
follows:

(a) it is simple and easy to implement

(b) it has O(r) complexity for the total
number of object faces

(c) acceleration by standard graphics hard-
ware is possible

(d) it is applicable to any renderable
surface.

The algorithm has been implemented on
a Personal Iris workstation using the GL
library. Experiments show that the compu-
tation time is comparable to display-calcu-
lation time and that, for up to 10* polygons,
interactive speeds are achieved. The speed
is about 10* times faster than that of existing
algorithms. The present implementation has
not been optimized at all, and there is plenty
of room for improvement.

The algorithm can be used in two ways:
inexpensive interference detection, and an
efficient culling method for more precise
collision/interference detection algorithms.
The algorithm makes real-time inter-
ference/collision detection possible.

REFERENCES

1. J. W. Boyse, ‘Interference detection among
solid and surfaces’, Communications of the
ACM, 22, (1), 3-9 (1979).

2.]J. K. Hahn, ‘Realistic animation of rigid
bodies’, Computer Graphics, 22, (4),299-308
(1988).

3. M. Moore and J. Wilhelms, ‘Collision
detection and response for computer ani-
mation’, Computer Graphics, 22, (4),
289-298 (1988).

4. N. M. Aziz, R. Bata and S. Bhat, ‘Bezier
surface/surface intersection’, IEEE Com-
puter Graphics and Applications, 10, 50-58
(1990).

5. E. Gilbert and D. Johnson, ‘Distance
functions and their application to robot path
planning in the presence of obstacles’, JEEE

M. SHINYA AND M.-C. FORGUE

®
Figure 7. A teapot falling onto a Mandelbrot field

J. Robotics Automation, RA-1, (1), 21-30
(1985).

6. R. O. Buchal, D. B. Cherchas, F. Sassani
and J. P. Duncan, ‘Simulated off-line
programming of welding robots’, The Inter-
national Journal of Robotics Research, 8, (3),
31-43(1989).

7. H. Samet, ‘The quadtree and related
hierarchical data structures’, ACM Comput-
ing Surveys, 16, (2), 187-260 (1984).

8. J. Kajiya, ‘Ray tracing complex scenes’,
Computer Graphics, 20, (4), 269-278 (1986).

9. J. Lengyel, M. Reichert, B. R. Donald and
D. P. Greenberg, ‘Real-time robot motion
planning using rasterizing computer graph-
ics hardware’, Computer Graphics, 24, (4),
327-335 (1990).

10. D. Salesin and J. Stolfi, ‘Rendering CSG
models with a ZZ-buffer’, Computer Graph-
ics, 24, (4), 67-76 (1990).

11. T. Saito and T. Takahashi, ‘Comprehen-
sible rendering of 3-D shapes’, Computer
Graphics, 24, (4), 197-206 (1990).

