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Abstract. A new paradigm, the minimization of errors in synthesized images, is
introduced to organically combine Computer Vision and Computer Graphics for
Virtual Reality applications. Based on it, a powerful algorithm, called the strip
DP algorithm, is proposed for epipolar image analysis. The algorithm reconstructs
VR models from epipolar images so that the error in the images synthesized from
the extracted model is minimized while geometrical consistency is maintained. The
dynamic programming technique, adopted as the optimization engine, yields com-
plete optimization at reasonable computation cost in a robust way. The strip DP
algorithm is a multi-pass solution to occlusion problems, and, in each pass, it ex-
tracts connecting feature lines that are not occluded by undetermined feature lines.
Experiments demonstrate its feasibility.

1 Introduction

The recent strong progress in Computer Graphics technologies has brought
Computer Graphics (CG) and Virtual Reality (VR) applications into daily
life. This results in increasing demands to create complex CG/VR models
for fancy image generation. Unfortunately, geometric modeling technologies
have advanced only in limited areas in the last decade, and most modeling
still requires skilled creators performing tedious, precise, and time-consuming
work. Quite naturally, people started to consider VR model generation from
real images in order to by-pass the geometric modeling process and to provide
easier VR model construction tools [6,5,10,8,4,1].

This paper presents a new paradigm in CG applications of CV: minimiza-
tion of errors in synthesized images. The conventional application scheme is
a simple concatenation of a CV system and a CG system, where the CV part
extracts surface geometries and textures (VR models), and the CG part ren-
ders images from them. Although the CV part, namely Shape-from-X, may
involve optimization in itself, the total system is an open-loop in terms of im-
age synthesis. The error minimization paradigm can introduce a closed loop
into the over-all system that tries to optimize the extraction of VR models for
image synthesis. This feedback is essential to the performance and robustness
of the system unifying CV and CG.

In CG applications, good models are those from which good images can
be synthesized. What are good images? A simple idea is that, if the same



images as the input images from which a model is derived are synthesized,
they are good images. This criterion is reliable when we have a massive set of
input images taken from many different view points because we can expect
satisfactory image synthesis under a variety of viewing conditions similar to
those of the input data.

In this paper, we particularly focus on the CG application of epipolar
image analysis, and realize an error minimization paradigm. It is shown that
the optimization can be achieved efficiently and robustly by the dynamic pro-
gramming technique (DP), which calculates the optimum solution at O(n?)
cost for n-variable optimization. The process is implemented and examined
with several data sets. Preliminary results show the potential of our approach.

2 Epipolar image analysis

Epipolar analysis [3] is one of the ‘shape from motion’ techniques, and recon-
structs 3D shape from dense image sequences. An epipolar image is a slice
of an image sequence that satisfies an epipolar constraint. When the cam-
era movement is parallel to the scan-line direction (hence perpendicular to
the viewing direction), epipolar image Iy(#,%) is a simple time slice of input
image sequence i(z,y;1), described by

Io(l‘,t) = Z($ay0at)a

where 1 is time, and the z-axis is in the scan-line direction. (For more general
cases, see [2].) In this simple case, the trace of the image points projected
from a 3D point is a straight line and its slope is proportional to the depth
from the camera (7), described as

da/dt = «Z,

where « is a constant determined by the camera parameters and the camera
velocity. Therefore, extracting the traces of feature points provides their 3D
depth values.

For CG applications, however, topological connections among these points
are necessary to execute hidden surface removal and texture mapping in the
rendering process. This reconstruction is a hard problem to solve. If the
hidden parts of all the traced lines are correctly extracted, logically possible
connections can be searched through symbolic operations [9]. However, it is
generally difficult to detect the end/start points of edges near intersections,
and small mistakes in extraction can lead to fatal errors due to the logical
reasoning features.

Here, we introduce the error minimization paradigm to robustly extract
geometry and textures so that the ‘best’ images can be synthesised in terms of
errors. We do not assume that the hidden parts of feature lines are known. We
also allow incorrect feature lines to be extracted. Both the selection of feature



lines and the decision of occlusions are made in the optimization process. This
yields robust computation by suppressing the influence of wrong results from
the pre-processing stage. In short, the optimization problem addressed here
can be stated in the following way: given n extracted feature lines, select
m < n lines and determine their connections so that the difference between
the synthesized images and input images is minimized.

3 Error estimation and optimization for occlusion-less
scenes

This section presents analyses on occlusion-less cases. Occlusions are then
discussed in the next sections.

3.1 Errors in synthesized images

First, let us define errors when connecting two feature lines a;(¢) and aa(t).
By using a norm of pixel colors ||.||, the error A can be defined by the dif-
ference between the input epipolar image Iy(#,t) and the synthesized image
Iyn(2,1), as:

az(t)
h(al,aQ):/t/ o 1oe.0) = Ty, Ot (1)

The norm can be, for example, the square sum of rgh-values,
1]l = 1% =1 + g7 + b* (2)

for I = (r,g,b). The synthesized image I,y,, and hence the error function
as well, depends on the rendering algorithm used. In most VR applications,
simple texture mapping with the diffusive reflection model is used. In this
case, Iy 18 represented by using texture f(s) defined on 0 < s <1, as

Lyn(z, 1) = f((x = a1 (1)) /(ax2(t) — ar(1))). (3)

Next, let us determine the texture f(s) that minimizes the error h. By using
Egs. 2 and 3 and setting the deviation dh/0f = 0, we have the optimum
texture:

f(s) = /(a2 —a1)lo((a2 — a1)s + ay, t)dt/ /(a2 —ay)dt. (4)
¢ ¢
This equation means that the texture should be the weighted average of the

input image along the flow. The error function h(ay, as) is then calculated as
the variance of the image, represented by

h(ay, as) = /01[/(a2 — ay)I2dt — (/(a2 — ay)Todt)?]ds (5)



3.2 Optimization with Dynamic Programming

The most important point in the previous discussion is that the error between
two lines depends only on these two lines in the occlusion-less case. This
feature allows us to apply the dynamic programming technique (DP), which
is a powerful optimization tool, widely used in many areas, e.g., [7].

Assume that n-lines {li,...,l,} = L are extracted as candidate feature
lines. The task is to select m-lines {A1, ..., A} = A from L so as to minimize
the total error H(A). The total error H is the sum of the errors between
adjacent selected lines, represented by

H(AL, o Am) = Y (A, Aiga), (6)
i=0
where Ag = [y and A1 = . are the left and right boundaries of the epipolar
image. Although a naive optimization of H(A) involves n-dimensional search,
it is possible to achieve it as an O(n?) process by DP (see [7]).

4 Occlusions

Although the analysis of the occlusion-less case is straightforward, occlusion
poses serious problems to DP optimization. Unlike the occlusion-less case,
candidate lines may intersect each other when one occludes another. This
suggests that error h associated with two lines (/;-13) also depends on all
crossing lines,

h(ll, 12) = h(ll, 12; 13, 14, )
Thus, DP cannot be applied in this form.

Fortunately, we found a multi-pass solution using DP that avoids NP com-
plexity. This solution is based on the fact that the visible area of an occluding
span is never affected by the occluded spans. This suggests the possibility of
successively appling DP and determining the optimal connections from near
to far in terms of depth.

This section presents the basic idea of dealing with occlusions using sim-
ple examples consisting of a two-layered scene (foreground and background).
Although we have theoretical form for general situations, they are omitted
here due to the tight space requirement.

4.1 Without self-occlusion

There are two types of occlusion to be considered: self-occlusion, in which a
surface is hidden by itself or its adjacent faces, and ‘circumstantial’ occlusion,
in which a surface is occluded by other surfaces. We first discuss the circum-
stantial case, and then extend the analysis to general cases. Our strategy is a
multi-pass approach. In each pass, we extract spans that are occluded only by
the already extracted spans. When there is no self-occlusion, this extraction
can be performed in the following way.



Select candidate lines that cannot be occluded. A line is selected if its
slope i1s smaller than those of all lines intersecting it. In the example in
Figure 1-a, candidate lines l4 and l5 are selected. Let us call these lines
primal candidate lines, or PCLs in short. Note that PCLs do not intersect
each other.

For each pair of PCLs (p;, p;), evaluate the error heose(pi, p;j) according
to Eq. 5. The value hcjose represents the error imposed when p; and p;
are connected.

For each pair of PCLs, evaluate hopen (ps, pj) that represents the minimum
error imposed on the region bounded by p; and p; when they are assumed
to be disconnected. For example, hopen (lo,1a) can be given by applying
DP described in Section 3.2 to lines Iy, [1, I2, I3 and 14 in the region left to
4. More generally, hopern, can be calculated by recursively applying Steps
1-4 to the region as in a divide-and-conquer fashion.

Apply DP to get
min» " hi(Ai, Aig1),

where h; is either hopepn OF hejose. We set the constraint that h; and h;qq
can not be hgpepn at the same time for any ¢. This is because, if both A;
and h; 41 are open, the candidate line A; ;1 does not really exist, in which
case hopen (Ai; Aig2) should be taken instead. Let us call this connected
span a visible span (VS).

Remove connecting PCLs and denied PCLs. Also trim VS regions from
the image area to process. Repeat the process from Step 1.

Vi Ve

(a) Visible spans and candidate lines.

Spansvo and ve are the boundaries,

treated as a special kind of visible spans

(b) The corresponding X-Z space.
SpanVsi-L3 occludesL1 and L2
when viewing from the right side

Figure 1: Occlusion in epipolar images



4.2 General occlusion

Self-occlusion makes the situation more complicated. Let us consider the
situation in Figure 1, where visible span vy ({4-l5) is already extracted and
all remaining lines p; are primal candidate lines. When, for example, I3 is
connected to vi, primal candidate lines left to I3 are all occluded by span
l3-v1; when viewing from the right side of v; (see Figure 1-b). Similarly, when
lg connects to vy, span vi-lg occludes all PCLs right to /g when viewing from
the left-side of v;.

Therefore, the error hy(vg, v1) associated with the region between vy and
v1 depends only on the connectivities of the VSs and candidate lines between
vg and v, represented by

ho(vo, v1) = by (vo, v1; 1, {Ai}),
Ai € {llal2al3}a

where p1 is assumed to connect to vi. Let H, denote the minimum value of

hy, defined as
Hy (v, v15 1) :H;iﬂhv(vl,vz;ﬂl,/\l,~~,/\m)~ (7)

This minimization can be performed by DP described in Section 3.2, since all
l; are primal in this example. Let us define a function H as the summation
of H,:

H(Vo,..,vm;/,to,..,/,tm):ZHU(UZ',UH_l) (8)

H represents the minimum error imposed when we choose m connections V;-
;. Since Eq. 8 is in the form of DP with respect to connection (V, ), it is
possible to minimize the total error H by DP. The connections (V;, p;) that
provide the minimum error can be regarded as new visible spans. Therefore,
by incorporating this optimization with the multi-pass approach previously
discussed, it is possible to extract visible spans in general occluding environ-
ments. Since the process extracts and removes visible spans in each pass, we
call it the strip DP algorithm.

5 Experiment and Discussion

Some preliminary experiments were made to confirm the feasibility of the
strip DP algorithm. Figure 2-a shows a test data sample that was pho-
tographed by an uncalibrated motion-controlled camera. The strip DP method
first extracts un-occluded visible spans, and other spans were extracted in the
front-to-back order in each pass. There initially were 85 candidate feature
lines(2-b), and 59 visible spans consisting of 65 feature lines were extracted
in total, discarding 20 feature lines were discarded. The required computa-
tion time was 36.9 seconds in total on an SGI workstation with an R4400 at



250MHz. The image synthesized from the extracted spans is almost visually
identical to the input image, and the error-power ratio was 0.018 (Figure 2-d
and -e).

6 Conclusion

A new algorithm, called the strip DP algorithm, was proposed for epipolar
image analysis. The algorithm reconstructs VR models from epipolar images
so that the error in the images synthesized from the extracted model be-
comes minimal while geometric consistency is maintained. We adopted the
dynamic programming technique as the optimization engine, because it can
perform complete optimization at reasonable computation cost. The strip DP
algorithm is a multi-pass solution to occlusion problems, and, in each pass,
it extracts connecting feature lines that are not occluded by undetermined
feature lines. Preliminary experiments demonstrated its feasibility.
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