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Lighting simulation is very important in realistic image synthesis, and the
simulation of subsurface scattering has recently attracted much attention. Al-
though the dipole/multipole model has succeeded in creating realistic images, it
is still difficult to deal with volumetric features in subsurface scattering, which
is important when rendering optically thin objects. This paper proposes a novel
rendering method that utilizes the plane-parallel solution and the ray-marching
method. The ray-marching method has been used to calculate single scattering
solutions, and the plane-parallel solution has been adopted to calculate BRDFs.
By combining these techniques, the proposed method efficiently captures vol-
umetric features in multiple subsurface scattering events. In our experiments,
the proposed method demonstrated a performance superior to that of previous
methods in terms of accuracy.

1. Introduction

Translucent materials can be seen everywhere in daily life, and rendering these
materials is very important for the synthesis of realistic images. Since light
scattering is dominant in such materials, an effective and efficient scattering sim-
ulation is critical in the rendering process. Light scattering can be described
mathematically by a linear integro-differential equation, known as the volume
rendering equation. Although the equation can be numerically solved by Monte
Carlo methods 1),2), they are computationally expensive, and several approxi-
mated solutions have been proposed.
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The single scattering approximation is a simple and efficient model for low-
albedo media. Ray-marching is a powerful solution in this situation, because the
scattered light can be simply evaluated by using a line integral along the viewing
ray. However, most translucent objects such as foods and drinks consist of high-
albedo materials. Extending this technique to multiple scattering events requires
the use of integrals in five dimensions, two with the direction and three with the
space, which is computationally impractical.

Jensen, et al. 3),4) introduced the dipole/multipole diffusion model, which pro-
vides a diffusive reflection in an analytical form. Although the dipole/mutipole
model has produced realistic images, there are still problems. In the dipole model,
the intensity of scattering light is estimated by a sum of influences from a pair of
virtual light sources. There are singularities at the dipoles, and the calculation is
inaccurate near them. This may cause several practical problems, especially for
optically thin objects, where dipoles are located near the surfaces. Directional
transmission through objects is also difficult to handle with the dipole/multipole
model, which can only simulate almost directionless reflections/transmissions.
Texturing is another issue that is hard to treat. The dipole/multipole model
tends to blur the irradiance too severely, and the color mixture is neglected by
the heuristics that are commonly used.

When layered homogeneous materials with parallel planar boundaries are uni-
formly illuminated, the volume rendering equation can be simplified to a linear
ordinal integro-differential equation. By discretizing the direction, the equation
becomes a set of first-order ordinal differential equations, which can be ana-
lytically solved. This solution is known as the plane-parallel solution 5). The
plane-parallel solution is a complete and efficient method to calculate BRDF of
scattering materials and has been applied to shading parameter design of skin 6)

and leaves 7). However, it relies on strong assumptions regarding the uniform il-
lumination, planar surfaces and homogeneous materials, and it is hard to capture
spatial variations by using this technique alone.

This paper presents an efficient and flexible rendering method that couples the
plane-parallel solution with the ray-marching scheme. The plane-parallel solu-
tion represents the complete distribution of multiple light-scattering in a compact
form. Ray-marching integrating the plane-parallel solution instead of simply at-
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1669 Rendering Translucent Materials with Plane-parallel Solution

tenuating the direct light allows us to simulate subsurface scattering in more
practical situations including variations in illumination, density, albedo, and so
on. With the benefits gained from the ray-marching, this algorithm is more tol-
erant to the spatial variation, and the use of the plane-parallel solution captures
multiple scattering features. This allows us to deal with textures by regarding
them as spatial albedo variations. By using integral tables, the computational
cost is almost comparable to ray-marching with single scattering. In addition,
this technique does not require particular spatial structures such as hierarchical
meshes, and can be easily applied to flexible objects with changing shapes and
topologies. We made experimental comparisons with the multipole model, and
confirmed that the proposed method is significantly more accurate than the mul-
tipole method. The method was also successfully implemented on GPU, which
performed interactive rendering of scattering objects.

2. Scattering Theories

This section overviews fundamental theories of scattering. We first describe
the rendering equation, and then the plane-parallel theory, and finally review the
dipole/multipole models.

2.1 Volume Rendering Equation
Light energy propagates through a translucent material via repeated scattering

and absorption events. The light intensity I(x, s) at x in the direction s satisfies
the volume rendering equation:

(∇ · s)I(x, s) = σt

(
−I(x, s) + α

∫
Ω

p(s, s′)I(x, s′)ds′
)

. (1)

Major symbols representing physical properties are listed in Table 1. This
partial differential equation has an equivalent integral equation form, and the
intensity at x can be described by

I(x, s) =
∫ l

0

[
exp(−d(l′))σs

∫
Ω

p(s, s′)I(l′, s′)ds′
]

dl′ + I0(x, s), (2)

d(l′) =
∫ l′

0

σt(l′′)dl′′, (3)

I0 = i0(s) exp(−d(l)), (4)

Table 1 Symbols.

σs scattering d optical depth
coefficient along view

σa absorption D optical depth
coefficient along light path

σt σs + σa θ angle between
s and z-axis

α albedo(σs/σt) ᾱ average albedo
p phase function Ω unit sphere
g average cosine of p I intensity

σ′
t σt − gσs s direction

Fig. 1 A layered material with depth z0.

x′ = x − l′s,
where i0(s) is the incident light distribution at surface point x0 and I0 is the
attenuated intensity (Fig. 1).

This integral equation can be solved iteratively, and the n-th solution is:

I(n) =
∫ l

0

[
exp(−d(l′))σs

∫
Ω

p(s, s′)I(n−1)(l′, s′)ds′
]

dl′ + I0(l, s). (5)

The single scattering solution I(1) can be calculated using ray-marching by eval-
uating this line integral.

The volume rendering equation becomes simple when the material is homo-
geneous and bounded by parallel planes (Fig. 1). In this case, the intensity I

only depends on z and s, and gradient ∇ in Eq. (1) is replaced by the ordinal
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1670 Rendering Translucent Materials with Plane-parallel Solution

differential d/dz, as:

cos θdI(z, s)/dz = −σt

(
I(z, s) + α

∫
p(s, s′)I(z, s′)ds′)

)
, (6)

where θ represents the angle between s and the z-axis. When the illumination is
also uniform, there exist analytic solutions, known as the plane-parallel solutions,
as discussed in the next section.

2.2 Plane-parallel Solution
2.2.1 Discretization
The plane-parallel problem can be solved through discretization. Let us dis-

cretize the scattering direction s. Using an orthogonal function system on the
unit sphere, φj(s), the intensity I(z, s) can be approximated as

I(z, s) �
M∑

j=1

Ij(z)φj(s). (7)

As the function system, the spherical harmonic functions were used in Ref. 7),
but in this paper, we selected compactly supported piecewise constant functions,
which allow more intuitive analyzes of results and a better representation of high
frequency components. We subdivide the upper and the lower unit hemi-sphere
into M/2 domains, Ωi, respectively, and define the function φi by

φi(s) =
{

1/|Ωi| (s ∈ Ωi),
0 (otherwise),

where |Ωi| denotes the solid angle of the domain Ωi. In this case, Ii simply
represents the average intensity over the domain Ωi.

After substituting Eq. (7) into Eq. (6), multiplying φi(s) on both sides and
integrating over the unit sphere discetizes the equation as

ki(d/dz)Ii(z) = σt

⎛
⎝−Ii(z) + α

∑
j

pijIj(z)

⎞
⎠ , (8)

ki =
∫

φi(s) cos θds,

pij =
∫∫

p(s, s′)φj(s′)φi(s)dsds′,

where α represents the albedo.

2.2.2 Solution
The discretized equation, Eq. (8), can be solved by a matrix eigen value de-

composition, which transforms the equation system into a simple diagonal form
in the following way. Set

I =

⎛
⎜⎝

I1

...
IM

⎞
⎟⎠ , P =

⎛
⎜⎝

p11 . . . p1M

...
. . .

...
pM1 . . . pMM

⎞
⎟⎠ ,

K = diag(k1, . . . , kM ),
Q = K−1(−E + αP ),

where diag(ki) denotes a diagonal matrix with diagonal elements ki, and E rep-
resents the identity matrix. Eq. (8) becomes

KdI/dz = σt(−E + αP )I
dI/dz = σtQI. (9)

Applying eigen decomposition to matrix Q, we have

V −1QV = Λ,

V =
(

v1 . . . vM

)
,

Λ = diag(λ1, . . . , λM ),

where vj and λj are the j-th eigenvector and the eigenvalue of matrix Q. Using
this, Eq. (9) can be diagonalized as

(d/dz)Ĩ = σtΛĨ , Ĩ = V −1I.

The j-th row of this equation is

dĩj/dz = σt(z)λj ĩj ,

which can be easily solved as
ĩj(z) = cj exp(λjD(z)), (10)

D(z) =
∫ z

0

σt(z′)dz′.

By determining the constant coefficient cj from boundary conditions, the in-
tensity distribution at z can be calculated as
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I(z) = V Ĩ(z) =
∑

j

cj exp(λjD(z))vj . (11)

The boundary conditions can be applied in the following way. For simplicity,
let us assume that the elements of the intensity vector I is arranged as

I =

(
i+
i−

)
,

in such a way that M/2 dimensional vectors i+ and i− represent the incoming
components in the positive z orientation and the outgoing components, respec-
tively. When the boundary at z = 0 is uniformly illuminated by an environment
map with distribution i0 and the other boundary at z = z0 is not lit, the boundary
conditions become

i+(0) = i0, i−(z0) = 0. (12)
By substituting Eq. (11) into Eq. (12), the conditions can be expressed as a linear
equation system with respect to the coefficients ci, which can be numerically
solved 8).

2.3 Dipole/Multipole Model
The dipole model provides a Bi-directional Scattering Surface Reflectance Dis-

tribution Function (BSSRDF), which represents the impulse response of the scat-
tering system. Using BSSRDF St, the outgoing light at x, I(x, s), can be calcu-
lated from the incoming light I(x′, s′) and S by integrating over the boundary
plane A and the incoming hemisphere Ω+,

I(x, s) =
∫

A

∫
Ω+

St(xi, si;xo, so)I(x′, s′)dxds.

When we can assume that the intensity I(x, s) is approximated by a simple
two term expansion,

I(x, s) = (1/4π)(φ(x) + 3(s · Φ(x))),
then φ(x) satisfies the diffuse equation and the BSSRDF can be calculated ana-
lytically as:

St(xi, si;xo, so) = Sd(xi, si)
= (1/π)Ft(xi, si)R(|xi − xo|) × Ft(xo, so),

where Sd represents the BSSRDF for the dipole model, and Ft denotes the Fresnel
transmittance due to refraction, which takes Ft = 1 when the optical index of

the material is 1. Note that the weight function R() neither depends on so and
si, which makes Sd almost uniform over the directions.

When the material is semi-infinitely thick, Sd can be regarded as the sum of the
influences from a pair of point sources, or dipoles. One of the dipole is located at
1/σ′

t below the plane, where σ′
t denotes the reduced extinction coefficient. Note

that Sd is singular at the position of the dipole. This never happens when dealing
with only planar surfaces, as required by the theory, but becomes problematic
when rendering thin objects, as shown in Section 5.

When the material width is finite, several dipoles are placed such that they sat-
isfy the boundary conditions. This extended dipole model is called the multipole
model. The multipole model is also capable of handling multiple layers.

3. Ray-marching with Plane-parallel Solution

The plane-parallel solution obtained in the previous section relies on strong
assumptions regarding uniform illumination, planar surfaces, and homogeneous
materials. Although it is an ideal method for calculating BRDF values of scat-
tering materials, it is hard to capture spatial variations by using this technique
alone. In this section, the plane-parallel solution is coupled with ray-marching
to provide a practical rendering algorithm for translucent materials.

3.1 Basic Idea
Ray-marching performs the linear integral operation in Eq. (5), which can be

regarded as a refinement process that provides a better solution In from an
approximated solution In−1. For example, the attenuated direct light, I0, is
refined to the single scattering solution, I1, by this operation. Our idea is to use
the plane-parallel solution, Ipp, as In−1 and to apply the ray-marching operation:

I =
∫ l

0

exp(−d(l′))σs

(∫
Ω

p(s, s′)Ipp(x′, s′)ds′
)

dl′ + I0(x, s), (13)

x′ = x − l′s.

We can expect the plane-parallel solution to provide a reasonable approximation
when the required conditions are approximately maintained within the scale of
several mean free paths. Therefore, the refined solution is expected to provide
much better results than the single scattering solution.
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1672 Rendering Translucent Materials with Plane-parallel Solution

Fig. 2 Ray-marching in a subsurface, where N and xj denote the normal vector and the
position of the j-th sampling point.

The key to successful simulation is the efficient evaluation of the integral and
optical depth D(x). We store the optical depth D(x) in a voxel structure for each
directional light. This optical density map can be produced by simple alpha-
blending, and is referred to during the evaluation of integral. The integration
can be performed efficiently by using integral tables because the plane-parallel
solution is the sum of a set of simple exponential functions.

3.2 Integral Tables
The calculation involves integration with direction s and length l. We pre-

pare two types of tables; one evaluates only the angular integral and the other
evaluates both integrals.

Let us fix the incident light distribution. First, the plane-parallel solution Ipp

is approximated by the sum of a small number, ne, of eigen vectors as:

Ipp(x;N) �
ne∑
j

cj exp(λjD(x))vj , (14)

where N denotes the vector normal to the surface (Fig. 2). We observed that
the change in Ipp with respect to N is small unless the incident angle is near-
tangential, so we neglect the dependence on N in the current implementation.

Then, the angular integral, Is, can be evaluated by

Is = σs

∫
p(s, s′)Ipp(x′, s′)ds′

= σs

ne∑
j

cj exp(λjD(x′))
[∫

p(s, s′)vj(s′)ds′
]

= σs

ne∑
j

cj [exp(λjD)PV j(s)]

= σsR(D; s), (15)
where

PV j(s) =
∫

p(s, s′)vj(s′)ds′.

Note that it only depends on the cosine between N and s if the phase function p

is isotropic. Referring to this two-dimensional table R(D; s), the integral can be
summed up by

I =
∑

j

exp(−dj)σsR(Dj ; s) + I0.

It is also possible to take account of the Fresnel reflection and refraction on the
boundary surface by multiplying the Fresnel factors, as

I = Ft(x0)
∑

j

Ft(pin) exp(−dj)σsR(Dj ; s) + I0,

where Ft(pin) represents the Fresnel factor at the light incident point, pin, and
dj and lj are the optical depth and the length along the viewing ray.

When local linearity of the optical depth D,
D(x′) = al′ + D1,

x′ = x − l′s
can be assumed, it is possible to analytically integrate the line integral by∫ l

0

exp(−d(l′))σs

(∫
Ω

p(s, s′)Ipp(x′, s′)ds′
)

dl′

=
∑

j

cjPV j

∫ l

0

exp(−σtl) exp(λja l′)dl′

=
∑

j

cjPV j(1/(−σt + αλi)) · (exp(−σtl + λjD2) − exp(λjD1))

= exp{(−σtl/a)}S(D2) − S(D1), (16)
D2 = D1 + la

IPSJ Journal Vol. 50 No. 6 1668–1678 (June 2009) c© 2009 Information Processing Society of Japan
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where

S(D; a, s) =
ne∑
j

cjPV j(1/(−σt + aλi)) exp(λjD). (17)

Next, let us consider the situation that the integral interval is subdivided into
several intervals in which the local linearity can be assumed. In this case, the
overall integral can be efficiently evaluated by using this three-dimensional table
S, as

I = I0 + Ft(x0)
∑

j

[Ft(pin) exp(−σtlj)

× {exp{(σt/a)(dj − dj+1)}S(Dj+1) − S(Dj)}].
Although the evaluation with the table S involves exponential calculations, this

provides more smooth images with a lower number of samples than the function
table R. We adopted the table S in the CPU implementation and the R in the
GPU implementation.

3.3 Albedo Map
Textures are very important in a realistic image synthesis. Since the color is

closely related to the albedo, we assume that textures are given as albedo maps,
as in previous work 4). In our implementation, albedo maps are prepared as 3D
textures or projection textures. Let us consider the situation where the albedo
α changes in space, as shown in Fig. 2. As discussed in Ref. 8), the intensity at
xj can be approximated by the plane-parallel solution with the average albedo ᾱ

as:
Ialb(Dj , s) � Ipp(Dj , s; ᾱ(xj)),

ᾱ(xj) =
∫ xj

pin

α(x)dl/|pin − xj |
Similar to the case of the optical density map, the average albedo can be pre-
calculated and saved in voxels. Using Ialb instead of Ipp takes the variation in
albedo into account in the integral. A straightforward solution for the efficient
integration is to prepare integration tables S(α) or R(α) for several albedo values
and to interpolate them.

3.4 Algorithm
The algorithm consists of a rendering process and a pre-process stage. The

Fig. 3 Algorithm.

rendering process performs the integration of Eq. (13). It first determines sample
points xi along the viewing ray, then obtains scattering properties such as the
optical depth D(xi), d(xj), and the average albedo ᾱ(xi) at each sample point.
The process finally evaluates the integral by using the integral table, R or S.
This is carried out for every viewing ray, i.e., pixel or vertex.

The pre-process prepares the matrices, maps and tables that are referred to in
the rendering process, namely:
( 1 ) matrices related to the plane-parallel solution, such as V and V −1,
( 2 ) the optical depth D(xi),
( 3 ) the average albedo ᾱ(xi),
( 4 ) the integral table R or S,
( 5 ) the furthest point buffer Fp.
The furthest point buffer, Fp(x, y) stores the object points that are furthest away
when viewed by the eye, and is referred to when the integral is evaluated in the
rendering process. Note that the Fresnel factor and directional shadows can be
taken into account by the optical density map by adding the logarithm of the
values.

Fp, R and S are updated every frame, and D(xi) and ᾱ(xi) are re-calculated
whenever the incident lights or the shapes of objects change.

An outline of the algorithm is listed in Fig. 3. It is straight-forward to imple-
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ment the rendering process both on CPU and GPU.

4. Experiments

4.1 Comparisons
We first conducted experiments to estimate the accuracy of the proposed

method under various controlled conditions.
Figure 4 shows the situation simulated in the experiments. The object shape

is a rectangular tube with dimensions 10mfp × 3 mfp in x and y and an infinite
length in the z direction, where mfp denotes the mean free path, 1/σt. The
incident light illuminates the upper surface S1. The optical index of the material
was set to 1.0. The light intensity was calculated by the proposed method, the
multipole method (MP) with/without the single scattering component, and by
a Monte Carlo method (MC), as a reference. For the phase function p, Henyey-
Greenstein’s function

p(s, s′) = (1/4π)(1 − g2)/(1 − 2g(s · s′) + g2)3/2,

was adopted. 128 points are sampled on S1 and S2, and 36 points on S3 and S4,
at which the intensity distribution was calculated.

4.1.1 Uniform Illumination
In the first experiment, a uniform directional light is used for the illumination.

The intensity distribution at x = 0 on S1 and S2 is shown in Fig. 5, where the
green line indicates the incident light direction. The root-mean-square (RMS)

Fig. 4 Cross section of the rectangular tube used in the experiments. The length along the
z-direction is infinite.

difference compared with the results from the Monte Carlo method is also pre-
sented in Table 2. As expected, the proposed method matches well with the
MC method.

Although the reflectance of the multipole model is in good agreement with
that of the MC method with the uniform phase function (g = 0) and perpen-

Fig. 5 Reflectance and transmittance distribution calculated by the Monte Carlo method, the
proposed method, the multipole method without/with the single scattering term. The
green line indicates the incident light direction. g = 0, α = 0.95.

Table 2 RMS differences. R/T indicates reflectance/transmittance. S and MP+S means
the results from the single scattering model and the multipole model with single
scattering.

light g R/T Pro- MP MP S
angle posed +S
0◦ 0 R 13% 13% 23% 65%

T 4 72 24 56
60◦ 0 R 10 43 101 57

T 8 210 302 89
0◦ −0.5 R 20 23 51 48

T 5 84 189 47
0◦ 0.5 R 24 19 6 81

T 7 58 26 66

IPSJ Journal Vol. 50 No. 6 1668–1678 (June 2009) c© 2009 Information Processing Society of Japan
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Fig. 6 Shaded images based on calculated intensity, where the infinite tube is clipped out in
the z-direction. The incident light is perpendicular to S1, as indicated by the green
arrows. In the top row, surfaces S1 and S3 are shown, and surface S2 is shown in the
lower row. g = 0, α = 0.95.

dicular light, the difference is significant in other cases, especially for transmit-
tance. Adding the single scattering term presents a better shape, but it reflects
too much energy, violating the energy preservation law. The conventional ray-
marching method only captures the single scattering contribution, which consid-
erably under-estimated the intensity and produced large errors, as shown in the
table.

The rectangular object was shaded based on the intensity distribution calcu-
lated at the sample points, Fig. 6 shows the shaded images, where the infinite
tube has been clipped out for easier observation. The side surfaces, S3 and S4,
are perpendicular to S1 and it is very difficult for layered material models to
deal with them. We found serious artifacts produced by the multipole model;
the multipole model locates one of the point sources below the surface S1, and
this causes a ‘bright belt’ on the side surfaces. This artifact might be reduced by
introducing some heuristics based on the surface geometry, but it is really trou-
blesome when the width of the material is close to 1/σ′

t. The proposed method
also overestimates the intensity, but provides much better results. As for the
lower surface S2, the multipole model failed to reproduce the directional light
transmittance on S2, which makes the RMS very large.

4.1.2 Density, Albedo and Shadow
Next, we changed σt stepwise at x = 0 from 1 to 1/2, emulating the density

variation. The shaded images are shown in Fig. 7. The proposed method agrees

Fig. 7 Shaded images when a stepwise change in density was applied at x = 0. g = 0,
α = 0.95.

Fig. 8 RMS difference plotted against x. At x = 0, (a) the density, (b) the albedo, and
(c) illumination, changes stepwise. g = 0, α = 0.95.

well with the MC method. On the other hand, the low density area S2 appears
to be too bright in the result from the multipole model. The bright area on S2

was caused by the same artifact as we observed in the side surfaces in Fig. 6. The
step pattern on S1 was also much too blurred by the multipole model. Similar
over-blurring was also observed in the albedo and shadow experiments.

In Fig. 8 (a), the RMS difference was plotted against x. As shown in the figure,
the proposed method provides a good approximation where x > 2mfp.

In a similar way, we examined the influence of the spatial variation in the
albedo and the illumination. Figure 8 (b) shows the RMS difference measured in
a simulation in which the albedo changes stepwise at x = 0 from 0.95 to 0.95×0.5.
In Fig. 8 (c), the surface S1 was only illuminated where x < 0 and the other half
was completely in the shadow. As shown in the figures, the proposed method
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provides a good approximation where x > 2mfp.
4.2 Image Synthesis
We rendered several translucent objects using the proposed method with both

the CPU and GPU implementation. In the CPU implementation, the intensity
is evaluated at each vertex and images are generated by Gouraud shading. We
also implemented the rendering process on GPU by GLSL, where the intensity is
calculated pixel by pixel. Figure 9 (a) shows a bunny made from a homogeneous
scattering material (g = 0, α = 0.95). As a reference, an image was rendered
with only a single scattering term, which appears to be too dark because it
neglects multiple scattering. The objects consist of 15 K polygons in total. We
rendered the image on an AMD Athlon 64 (2 GHz) with an NVIDIA GeForce
8800GTX, and the rendering time was 0.17 seconds per frame on the CPU. The
preprocessing time was 1.3 sec for the eigenvector calculation, 1.3 seconds for
the 3D scan-conversion to build the density map, and 0.16 seconds to create the
optical depth map. The 334 directions were sampled for si on the hemisphere
(Eq. (7)).

Figure 9 (b) shows a piece of chestnut Yokan (a sweet jelly made from red beans)
on a diffusive glass plate. The chestnut and Yokan have different albedo and den-
sity values and are composed into a single density and average albedo map. The
used albedo rgb values are (0.16, 0.11, 0.07) for the Yokan and (0.51, 0.42, 0.16)
for the chestnut. The rendering time was 0.21 sec per frame on CPU and 0.017 sec
on GPU.

Figure 9 (c) shows pieces of sushi, where albedo mapping was applied to raw
fish and rice. Volumetric scattering in tuna was successfully simulated, and
images of sushi with a tasty appearance were generated. Three types of tuna,
akami (low fat tuna), chu-toro (high fat tuna), oh-toro (extremely high fat tuna),
are displayed in the figure, and the differences between them were effectively
enhanced by the albedo textures. Albedo maps were applied to the rice and fish
using projection textures. The albedo value α in the albedo map was calculeted
from the texture value r by regarding this as the reflectance. According to the
Kubelka-Munk reflectance formula 8), α is calculeted by

α = 2R/(R2 + 1).
The rendering time was 1.8 sec per frame on CPU and 0.12 sec on GPU.

proposed method single scattering

(a) Translucent bunny.

(b) A piece of chestnut Yokan.

(c) Sushi.

Fig. 9 Examples of food rendering.
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4.3 Discussion
As shown in the controlled experiments, the proposed method exhibited far

better performance than the multipole model. Although the multipole model
has been proven to be capable of creating realistic images, serious problems were
observed when optically-thin objects were concerned.

The proposed method, on the other hand, provided reasonable approximations
at locations that are separated from boundaries by a few mean free paths. The
proposed method is essentially based on a voxel structure and is very flexible to
shape deformation and topological changes. Unlike mesh-based filtering, a simple
volume reconstruction adapts to changes, without the necessity of re-classifying
meshes and/or re-meshing. The scattering properties and the light direction can
also be edited interactively without any particular algorithmic modification.

Albedo mapping was incorporated into the proposed method in a natural way
that simply integrates the plane-parallel solution according to the average albedo
values. As demonstrated in the images, the proposed method successfully repro-
duced realistic textures in multiple scattering environments. In the multipole
model, on the other hand, the mapping is achieved in a heuristic way that causes
scattering effects to be normalized into gray scale.

5. Conclusion

We proposed a novel rendering method that couples the plane-parallel solution
with ray-marching. The method captures both multiple scattering features and
volumetric appearance. In the experiments, the proposed method demonstrated
far better performance than previous methods in terms of accuracy and flexibil-
ity. The method was successfully applied to the rendering of food. Interactive
speed was achieved by a CPU implementation for simple objects, and the GPU
implementation further improved the display rate more than 10 times faster than
the CPU implementation.

The proposed method involves several sampling processes. We observed aliasing
artifacts, and the future work includes its efficient anti-aliasing. We are also
interested in applying the method to participating media such as clouds, by which
we could establish a unified practical algorithm that is capable of dealing with
all scattering media. It is also of interest to apply the plane-parallel solution to

texture-based approaches such as the shell texture 9) because the mode functions
may represent the light field in a compact manner.

References

1) Dorsey, J., Edelman, A., Jensen, H.W., Legakis, J. and Pedersen, H.: Modeling
and rendering of weathered stone, Proc. SIGGRAPH’99, pp.225–234 (1999).

2) Pharr, M. and Hanrahan, P.: Monte Carlo evaluation of non-linear scattering equa-
tions for subsurface reflection, Proc. SIGGRAPH 2000, pp.75–84 (2000).

3) Jensen, H.W., Marschner, S.R., Levoy, M. and Hanrahan, P.: A practical model
for subsurface light transport, SIGGRAPH 2001, pp.511–518 (2001).

4) Donner, C. and Jensen, H.W.: Light diffusion in multi-layered translucent mate-
rials, ACM Trans. Gr., Vol.24, No.3, pp.1032–1039 (2005).

5) Ishimaru, A.: Wave propergation and scattering in random media, Vol.1, Academic
Press, New York (1978).

6) Stam, J.: An illumination model for a skin layer bounded by rough surfaces, Proc.
12th Eurographics Workshop on Rendering, pp.39–52 (2001).

7) Wang, L., Wang, W., Dorsey, J., Yang, X., Guo, B. and Shum, H.-Y.: Real-time
rendering of plant leaves, ACM Trans. Gr., Vol.24, No.3, pp.712–719 (2005).

8) Shinya, M., Shiraishi, M., Dobashi, Y., Iwasaki, K. and Nishita, T.: Fast Display of
Sub-surface Scattering using Eigen Solutions, VC2008, 08-01 (2008) (In Japanese).

9) Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B. and Shum, H.-Y.: Shell texture
functions, ACM Trans. Gr., Vol.23, No.3, pp.343–352 (2004).

(Received December 1, 2008)
(Accepted March 6, 2009)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.17, pp.180–190.)

Mikio Shinya is currently a Professor at Department of Infor-
mation Science, Toho University. He received a B.Sc. in 1979, an
M.S. in 1981, and a Ph.D. in 1990 from Waseda University. He
joined NTT Laboratories in 1981, and moved to Toho University
in 2001. He was a visiting scientist at the University of Toronto in
1988–1989. His research interests include computer graphics and
visual science.

IPSJ Journal Vol. 50 No. 6 1668–1678 (June 2009) c© 2009 Information Processing Society of Japan



1678 Rendering Translucent Materials with Plane-parallel Solution

Michio Shiraishi was born in 1974. He received his Ph.D. de-
gree from The University of Tokyo in 2003. He has been a lecturer
of Toho University since 2005. His current research interests are
computer graphics and web application systems.

Yoshinori Dobashi received the B.E., M.E., and Ph.D. in En-
gineering in 1992, 1994, and 1997, respectively, from Hiroshima
University. He worked at Hiroshima City University from 1997
to 2000 as a research associate. He is presently an associated
professor at Hokkaido University in the graduate school of engi-
neering. His research interests are computer graphics including
lighting models.

Kei Iwasaki received the B.S., M.S., and Ph.D. degrees from
The University of Tokyo in 1999, 2001, 2004, respectively. He is
presently a research associate at the Faculty of Systems Engineer-
ing, Wakayama University. His research interests are mainly for
computer graphics.

Tomoyuki Nishita received the B.E., M.E., and Ph.D. degrees
from Electrical Engineering from the Hiroshima University, Japan,
in 1971, 1973, and 1985, respectively. He worked for Mazda Mo-
tor Corporation from 1973 to 1979. He has been a lecturer at the
Fukuyama University since 1979, then became an associate pro-
fessor in 1984, and later became a professor in 1990. He moved to
the Department of Information Science of the University of Tokyo

as a professor in 1998 and now is a professor at the Department of Complex-
ity Science and Engineering of the University of Tokyo since 1999. His research
interests are mainly for computer graphics.

IPSJ Journal Vol. 50 No. 6 1668–1678 (June 2009) c© 2009 Information Processing Society of Japan


