Workshop on Local INlumination
Proceedings
Graphics Interface '92

Vancouver, British Columbia, Canada

These proceedings gather the texts accompanying the presentations given at the
Workshop on Local lllumination held within Graphics Interface ‘92 in Vancouver,
May 11th, 1992.

We thank the presenters and the participants, and we hope that these
proceedings will stimulate further thoughts and research on that important field
of computer graphics.

Alain Fournier and Pierre Poulin
Department of Computer Science
University of British Columbia,
Vancouver, BC

V6T 1Z2

Canada

Email: {fournier|poulin}@cs.ubc.ca

- 61 -

Hierarchica] 3D-Texure

Mikio Shinya

NTT Human Interface Laboratores
3-9-11 Midori-cho
Musashino-shi, Tokyo, 180 Japaz
email: shjnya@nttarm.ntt.jp

Abstract
A hierarchical 3D-texture model is Proposed that ensures smooth :ransition ‘== gometry to
mapping and allows efficient anti-aliasing of complex scenes. Severa; Drobiems w2 7
are pointed out, and possible solutions are described. Early experiments indicaze 122 ~otentiai of
the model.

1 Introduction

Local illumination models are computational models that endeavour to replicate the :\ﬁec:anc-:f distri-
bution function of surfaces and their micro-structures. Since the term “micro” is reialivs o scaiing and
distance, it is very important to establish a smooth transition from global structures. L2 geometry.
to local illumination models.

Kajiya introduced the idea of a hserarchy of detail [KAJ83], where three basic leveis are introduced.
These are the lighting (reflection) level. the mapping level (texture, bump. displacement. etc.). and
the model (geometry) level. The mapping level approximates the geometry level in the form of images.
The reflection level represents stochastic properties of the mapping necessary for shading calcglanlon.

Obviously, there are excessive gaps among the levels to allow a smooth transition. and many
studies have attempted to improve the models by introducing three-dimensional features. ke occiu;lon
and self-shadowing [MAX,CABD,POULI.\']. Among these, 3D-texture [KAJ39.PERLINI explicitly
represents discretized three-dimensional shapes, and ig expected to bridge the gap between geometry
and mapping. _

Another important aspect of local iiuminazion models is their nesd for a pre-Aitering feature
to ensure accurate anti-aliasing. For example. thousands of tiny mirror-like facets are “filtered” in
existing reflection models to form a distribution function of facet normals: this prevents aliasingz. 3D-
texture could provide a new type of anti-zliasing method for complex objects: the pre-fiitering of 3D
objects. -

This paper proposes a hierarchical 3D-texty;- model that achieves a smooth transition from ge-
ometry to mapping, as well as effective anti-aliasing through jts pre-filtering feature. The hierarchical
3D-texture has a similar structure to ths hilerarchical two-dimensionali textures such as pyramidal
textures. and an appropriate level is chosen according to the resolution required by rendering.

For this purpose, we need a 3D-texture modei which:

* can be generated from geometric obzcts.
¢ can provide the information needed “sr rencering.

¢ can be summed up, or filtered, to bu- 4 o%2r resolution 3D-textures.

The following sections emphasize several v-sv sroniems with 3D-texture. and possible approaches
are described together with an early eXperimeniz, resy;:

GI ’92 Workszop oz Loea) NMumination

- 62 -

2 3D-texture

3D-texture was developed by Kajiya et al. [KAJ89] and by Perlin et al. [PERLIN]. Perlin's model
{hyper-texture) emphasizes the modeling tasks using set operations and modulation functions. while
Kajiva's model (texel) 1s more rendering-oriented. These two papers were the starting point for this
paper.

In Kajiva's model. each voxel contains three kinds of information: a scalar density p for light
attenuation, a coordinate system B = (.t l-;) for the shading model. and shading model V. 3D-
textures are rendered by ray tracing, sampling points on rays, and summing up the light intensity.
This mode! works well for fur objects, as demonstrated in the Teddy Bear images. However. as pointed
out in his paper, there remain several open problems for further extension:

e how to construct 3D-texture from geomet.ric models,

e how to sum up voxels.
In addition, the following problems should be also solved to realize hierarchical 3D-textures:

e how to reduce the memory requirement,

e what kinds of information must be kept and how to use them in rendering.

3 Approaches

3.1 Reducing memory requirement

To achieve a smooth transition from geometry, we need a series of 3D-textures ranging from fine
to coarse resolutions. Unfortunately, storing a three-dimensional array of voxels at high resolution,
say 512x512x512, requires several gigabytes of memory, and is too expensive for current computers.
Thus, solving the storage problem is the most important issue from the practical viewpoint.

The key idea is that most vorels are not visible to the eye, and that we don't need {o process
invisible vozels. There are two kinds of invisible voxels:

e voxels containing no objects,

o voxels completely occluded from all directions.

Sparse visible voxels can be efficiently stored using a list structure (Figure 1).

The number of visible voxels is, at most, the sum of the projected areas of all facets, and is expected
to be O(n?) for n-pixel resolution in most cases. The worst case would require O(n®) storage with
this strategy, which would occur, for example, when tiny particles, like fog or smoke, are uniformly
distributed in space. In this case, however, we can apply other data compression techniques. such as
run-length coding, that can take advantage of the uniformity.

3.2 Rendering

In general, the rendering process involves two tasks: visibility (occlusion) check and light intensity
calculation (shading and shadowing). Thus, each voxel should store information on occlusion and
shading. With this information. rendering can be achieved through the ray tracing scheme.

Information to store for rendering To allow occlusion and shading calculation. voxels should
contain the following information:

GI '92 Workshop on Local Ilumination

.63 -

| B

2 OO

1 !
T T 1

1 2 3 4 5 1 2 3 4 s

Figure 1: List-structure.

1 -px

Figure 2: Density of a voxel.

Density To describe occlusion by a single voxel, the density, or the rate of occlusion, should be stored
in each voxel. Because occlusion by surfaces is significantly anisotropic. the density strongly
depends on direction (Figure 2). At least, p should be a vector representation indicating the
occlusion ratios in the x-, y-, and z-directions.

Correlation To describe occlusion by multiple voxels, correlation among voxels should be stored. In
Kajiya’s model, density values are simply multiplied along the ray path. analogous with light
absorption in volumetric media. This is a good approximation when correlation among the
voxels is low; for example, when tiny surfaces are randomly placed in the voxels (Figure 3-a).
However, voxels may have strong correlation, as shown in Figure 3-a and -b.

Shader To describe shading information, shading functions (¥) and their frames (B) should be
stored. Since multiple surfaces may lie within a single voxel. shading information should be
stored as a list.

Ray tracing 3D-texture Figure 4-a shows conventional ray tracing, where infinitely thin rays are
traced. In this case. occlusion (or absorption) and light intensity should be evaluated on each line

GI 92 Workshop on Local Illumination

- 64 -

N3 p3
V4

P2 p2
et pl

poa =I1 pi pow =1-Z pi pow =1-max pi
(a) (b) ©

Figure 3: Correlation.

v
1"’/ I3
11 :

V.

7~

(a) ray tracing (b) cone tracing (c) digitized cone tracing

Figure 4: Rendering 3D-texture.

segment (/;), and then the total intensity is summed up along the whole path. For this evaluation.
occlusion should be calculated in the ray direction. Since the ray direction could be any direction, the
voxels should store occlusion information for all directions, which would be too expensive.

The ideal ray tracing could be achieved by cone tracing [AMA] (Figure 4-b). In this case. ocelusion
and light intensity are evaluated on each volume segment. However, this algorithm involves expensive
volume integral calculations.

When the width of a cone is comparable with the voxel size, the cone can be approximated by its
digitized line in the voxel space. In the example shown in (Figure 4-c), the cone is approximated by
the successive voxels, v;-vo-v3-v4. This considerably simplifies the situation as follows:

e the direction of each voxel traversal becomes +x, ty, or %z.

e volume segments of cones become identical to voxels. -

Thus. voxels should store occlusion information only for the six directions. Furthermore, pre-computation
of the volume integral in each voxel can avoid expensive volume integrals in the rendering phase.

3.3 Summing up voxels

This process involves filtering the information stored in voxels, i.e., density, correlation. and shaders.
The calculation of density and correlation is straight forward. but filtering shaders requires representing

GI '92 Workshop on Local Illumination

{a) original

(c) 4x4 (d) 8x8

Figure 5: Hierarchical 3D-texture of bamhoo

GI '92 Workshop on Local Illumination

- 66 -

Table 1: Number of non-empty voxels

[level | resolution [number of non-empty voxels |
original | 204x825x173 (29.1M) . 82K
2x2 102x413x87 (3.6M) 41K
4x4 51x207x44 (460K) 19K
8x38 26x104x22 (59K) 6.4K

the distribution functions of normal vectors in some way.

Recently, Fournier has developed an elegant method to filter bump maps [[FOU92]]. In his method.
distributions of normal vectors are approximated by an adequate number of Phong-like functions using
the non-linear least square technique. This method can be applied to voxel filtering.

3.4 Building a hierarchical 3D-texture

Once the techniques described in the above sections are established, construction of a hierarchical
3D-texture from geometry is straight forward. First, geometric objects are 3D-scan-coverted at a
high resolution, and all voxels containing surfaces are stored as a 3D-texture. The 3D-texture is then
successively summed to make a series of lower resolution 3D-textures. When the 3D-texture becomes
one-laver, it has reached the mapping level. i.e, shader-mapping plus displacement mapping.

4 Preliminary Experiment

A simple experiment was made to examine the memory requirement. A bamboo stalk consisting of
41K polygons was first converted into a 3D-texture at the resolution of 102x413x173. and then the
original texture was filtered to the levels of 2x2x2, 4x4x4, and 8x8x8 (Figure 5).

In the original texture, the number of non-empty voxels was found to be about 82K from 29.1M
voxels (102x413x173). (See Table 1).

5 Conclusion

This paper proposed a hierarchical 3D-texture model that ensures smooth transition from geometry
to mapping and allows efficient anti-aliasing of complex scenes. Several problems with 3D-texture
were pointed out, and possible solutions were described. Early experiments indicated the potential of
the model, and extremely complex scenes, like mountains covered with trees. or a stadium filled with
thousands of people, are expected to be accurately rendered.

Acknowledgments

The author would like to thank Alain Fournier for useful discussions on bump map filtering. He also
thanks Takahiko Kamae and Rikuo Takano for their administrative support. Marie-Claire Forgue for
helpful suggestions, and Atsushi Kajivama and Hiroki Kobayashi for their technical support.

References

[AMA] J. Amanetides. ‘Ray Tracing with Cones’, Computer Graphic 18, No.3. pp.129-135. 1954.

GI1 ’92 Workshop on Local Illumination

o pmm W WS WS HR WM SN WE WE MR SN WE WE W W W W W

- 67 -

[CABD] B. Cabral. N. Max. R. Springmeyer, ‘Bidirectional Functions from Surface Bump Maps'.
Computer Graphics 21. Nod. pp.273-281, 1987.

(kAJ85] J.T. Kajiya. ‘Anisotropic Reflection Model’. Computer Graphics 19, pp.13-21. 19585.

[KAJ89] 1.T. Kajiya. T. L. Kay, ‘Rendering Fur with Three Dimensional Textures’. Computer Graph-
ics 23, pp.271-280, 1989.

[MAX] N. Max, "Shadows for Bump Mapped Surfaces”, Advanced Computer Graphics. T. Kunii Ed.
Springer Verlag, Tokyo, pp.145-156, (1986).

[PERLIN] K. Perlin, ‘Hypertexture’. Computer Graphics 23, pp.253-262. 1989.

[POULIN] P. Poulin. A. Fournier. *A Model for Anisotropic Reflection’. Computer Graphics 24. No.4.
pp. 273-282, 1990.

[FOU92] A. Fournier. ‘Filtering Normal Maps and Creating Multiple Surfaces’. submitted for publi-
cation.

GI 92 Workshop on Local lumination

